Simulating Heavy Ion Beams Numerically using Minimum Entropy Reconstructions - SHINE

The aim of this project is to develop a novel tool for the simulation of heavy ion beams as they are decelerated in thick targets. We want to characterize the spatial and energy distributions of all primary particles and secondary fragments in a target. This is relevant because ion beams are used in various fields: atomic physics (e.g. atomic collisions, ion capture), nuclear physics (e.g. the study of the structure of nuclei), electronics (e.g. deposition of elements), material science and chemistry (e.g. analysis of damage on the walls of a tokamak), biology (e.g. the study of the toxicology of cellular tissues by ion analysis). Additionally, several world-class facilities are dedicated to these studies (e.g. FAIR in Germany, GANIL in France). Simulations of heavy ion beams are challenging for two main reasons. First, beams are difficult to capture with a grid-based method. Second, the simulations rely on measurements of the stopping power, and therefore must be regarded as uncertain. We therefore develop a new entropy-based discretization scheme which allows both a sub-grid resolution and at the same time a very detailed reconstruction that can capture beams. In addition, we will use a similar method to characterize the uncertainties in the particle distribution due to uncertain stopping powers. The method is computationally challenging but highly parallelizable, and therefore ideally suited for modern computer architectures.

This project is funded by the Agence Nationale de la Recherche (ANR) and the Deutsche Forschungsgemeinschaft (German Research Foundation, DFG) in a joint funding initiative. Partner: Bruno Dubroca, Université de Bordeaux




Last modified: 2017/03/23 19:52