Vertr.-Prof. Dr. Jan Giesselmann

MATHCCES
Department of Mathematics
RWTH Aachen University
Schinkelstr. 2
D-52062 Aachen
Germany

Room: 326 (Rogowski building, 3rd floor)
Phone: +49 (0)241 80 98 661
Email: Jan Giesselmann

Office Hours


Thursday 15-16 h

There is no need to get an appointment for my office hour, just drop by my office. If you cannot make it at any of the offered dates, please contact me for an appointment.

Teaching

Winter 2017/18
Previous teaching

Research Interests

  • Finite Volume and Discontinuous Galerkin Schemes
  • Hyperbolic Conservation Laws
  • A priori and a posteriori error estimates
  • Compressible multiphase flows


Publications

Preprints
  • F. Meyer, J. Giesselmann, C. Rohde: A posteriori error analysis for random scalar conservation laws using the stochastic Galerkin method. https://arxiv.org/abs/1709.04351
  • J. Giesselmann, N. Kolbe, M. Lukacova-Medvidova, N. Sfakianakis: Existence and uniqueness of global classical solutions to a two species cancer invasion haptotaxis model. https://arxiv.org/abs/1704.08208
  • J. Giesselmann, P. G. LeFloch: Formulation and convergence of the finite volume method for conservation laws on spacetimes with boundary. http://arxiv.org/abs/1607.03944
  • W. Dreyer, J. Giesselmann, C. Kraus: Modeling of compressible electrolytes with phase transition. http://arxiv.org/abs/1405.6625
Refereed Journals
  • J. Giesselmann, T. Pryer: A posteriori analysis for dynamic model adaptation in convection dominated problems. Math. Models Methods Appl. Sci., Vol. 27(13), pp. 2381 – 2423, 2017.
  • J. Giesselmann, A. E. Tzavaras: Stability properties of the Euler-Korteweg system with nonmonotone pressures. Appl. Anal., Vol. 96(9), pp. 1528 – 1546, 2017.
  • J. Giesselmann, C. Lattanzio, A. E. Tzavaras: Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics. Arch. Ration. Mech. Anal., Vol. 223(3), pp. 1427 – 1484, 2017.
  • A. Dedner, J. Giesselmann: A posteriori analysis of fully discrete method of lines DG schemes for systems of conservation laws. SIAM J. Numer. Anal., Vol. 54(6), pp. 3523 – 3549, 2016.
  • J. Giesselmann: Relative entropy based error estimates for discontinuous Galerkin schemes, Bull. Braz. Math. Soc. (N.S.), Vol. 47(1), pp. 359 – 372, 2016.
  • J. Giesselmann, T. Pryer: Reduced relative entropy techniques for a priori analysis of multiphase problems in elastodynamics. IMA J. Numer. Anal., Vol. 36(4), pp. 1685 – 1714, 2016.
  • J. Giesselmann, T. Pryer: Reduced relative entropy techniques for a posteriori analysis of multiphase problems in elastodynamics. BIT Numerical Mathematics, Vol. 56(1), pp. 99 – 127, 2016.
  • J. Giesselmann, C. Makridakis, T. Pryer: A posteriori analysis of discontinuous Galerkin schemes for systems of hyperbolic conservation laws. SIAM J. Numer. Anal., Vol. 53(3), pp. 1280 – 1303, 2015.
  • J. Giesselmann: Low Mach asymptotic preserving scheme for the Euler-Korteweg model. IMA J. Numer. Anal., Vol. 32(2), pp. 802 – 832, 2015.
  • J. Giesselmann, T. Pryer: Energy consistent discontinuous Galerkin methods for a quasi-incompressible diffuse two phase flow model. M2AN Math. Model. Numer. Anal., Vol. 49(1), pp. 275 – 301, 2015.
  • J. Giesselmann: Relative entropy in multi-phase models of 1d elastodynamics: Convergence of a non-local to a local model. J. Differential Equations, Vol. 258(10), pp. 3589 – 3606, 2015.
  • J. Giesselmann, C. Makridakis, T. Pryer: Energy Consistent DG Methods for the Navier–Stokes–Korteweg System. Math. Comp., Vol. 83, pp. 2071 – 2099, 2014.
  • G. L. Aki, W. Dreyer, J. Giesselmann, C. Kraus: A Quasi–Incompressible Diffuse Interface Model with Phase Transition. Math. Models Methods Appl. Sci., Vol. 24(5), pp. 827 – 861, 2014.
  • J. Giesselmann, A. E. Tzavaras: Singular limiting induced from continuum solutions and the problem of dynamic cavitation. Arch. Ration. Mech. Anal., Vol. 212(1), pp. 241 – 281, 2014.
  • W. Dreyer, J. Giesselmann, C. Kraus: A compressible mixture model with phase transition. Phys. D, Vol. 273-274, pp. 1 – 13, 2014.
  • J. Giesselmann, T. Müller: Geometric Error of Finite Volume Schemes for Conservation Laws on Evolving Surfaces. Numer. Math., Vol. 128(3), pp. 489 – 516, 2014.
  • J. Giesselmann: A relative entropy approach to convergence of a low order approximation to a nonlinear elasticity model with viscosity and capillarity. SIAM J. Math. Anal., Vol. 46(5), pp. 3518 – 3539, 2014.
  • W. Dreyer, J. Giesselmann, C. Kraus, C. Rohde: Asymptotic Analysis for Korteweg Models. Interfaces Free Bound., Vol. 14(1), pp. 105 – 143, 2012.
  • J. Giesselmann: A Convergence Result for Finite Volume Schemes on Riemannian Manifolds. M2AN Math. Model. Numer. Anal., Vol. 43(5), pp. 929 – 955, 2009.
Last modified: 2017/11/02 11:04