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1 Introduction

This paper has been developed for the CES seminar in the Master program of Computational
Engineering Science at RWTH Aachen University. It aims at summarizing the derivation of
the Intrusive Polynomial Moment Method presented in [4], focussing on its similarities to
the minimal entropy closures used in Transport Theory and its advantages and disadvan-
tages compared to commonly used methods in Uncertainty Quantification.
Today a lot of simulation applications make use of deterministic models in order to predict
the behaviour of a physical system. However, the question arises whether these models
allow a good investigation of the physical system in the case of non deterministic inputs.
Deterministic inputs are often not available, as for example the choice of model parameters
or measurements of boundary or initial conditions contain uncertainties. As a result, one
might ask the question whether we can relie on the results of a solution computed without
taking into account these known and present uncertainies.
Successful approaches have been proposed to treat these uncertainties in simple problems,
such as the steady diffusion equation [5] or the advection equation [2] with Stochastic Galerkin
Methods, which provide spectral convergence for smooth data. However, using discontinu-
ous data can lead to oscillations in the solution. Furthermore, the problem can loose impor-
tant characteristics, such as for the Euler equations hyperbolicity.
In [4] the Intrusive Polynomial Moment Method (IPMM) was introduced, which aims at pre-
serving hyperbolicity of conservation equations and preventing oscillations in the space of
uncertainties.
The paper is structured as follows: In Section 2, a model problem will be described and
investigated by the use of standard methods of Uncertainty Quantification. Section 3 links
the concepts of Transport Theory with Uncertainty Quantification and thereby presents the
motivation and derivation of IPMM. In Section 4, results of the different methods of Uncer-
tainty Quantification, including IPMM, are presented and compared. Section 5 summarizes
the findings for the given model problem and points to some more interesting features of
IPMM that have been investigated in [4].

2 Uncertainty Quantification

2.1 Model Problem

The following model problem is introduced in order to motivate the use of Uncertainty
Quantification and to present its standard methods, focusing on their deficiencies.
The problem we look at is Burgers equation in the presence of uncertain initial conditions,
namely

∂tu(t,x, ξ) +
1

2
∂xu

2(t, x, ξ) = 0 (1a)

u0(x, ξ) =


uL if x ≤ x0 + σξ

uL + (uR − uL) · x0+σξ−x
x0−x1 if x0 + σξ ≤ x ≤ x1 + σξ

uR if x1 + σξ ≤ x
(1b)

where the uncertainty has been parametrized with the uniform random variable ξ ∼ U(−1, 1).
It is important to note that even though the uncertainty is only explicitly given for the initial
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condition, it will influence the solution, meaning that the scalar solution u(t, x, ξ) will de-
pend on the random variable ξ for all times t ∈ R+ and the spatial coordinates x ∈ R. The
initial state can be thought of as two constant states uL and uR, which are linearly connected
between x0 and x1. This function is then translated to the right by a factor of σξ.
Now, our goal is to compute moments of the underlying probability density of the solution
at a fixed time tend. An important moment is the expectation value which is a 0 − th order
moment. It is given by

E[u(T, x, ξ)] =

∫
R
ufU,T,x(u)du =

∫ 1

−1
u(T, x, ξ)fΞ(ξ)dξ. (2)

2.2 Monte Carlo Method

A straight forward approach to compute the expectation value is the Monte Carlo (MC)
Method. The convergence of this method is guaranteed by the strong law of large numbers.

Theorem 2.1 Let U1, U2, ... be a sequence of independent and identically distributed random vari-
ables with expectation value µ. We have for every ε > 0

P

(
lim
M→∞

∣∣∣∣∣ 1

M

M∑
i=0

Ui − µ

∣∣∣∣∣ < ε

)
= 1.

Proof A proof can be found in [1]. �

This motivates the idea of repeating a random experiment M times, where M should be a
large number. Averaging the results of all experiments will then give an approximation of
the expectation value.
In order to apply this concept to the model problem (1), we assume that a routine, which
computes the initial conditions for a given ξ, as well as a finite volume routine, which com-
putes the solution of burgers equation at time tend for a given initial condition u0, are pro-
vided. Then a straight forward algorithm to compute the expectation value is

Algorithm 1 Monte Carlo Method
1: for n = 1 to M do
2: ξ = GenerateRandomV ariable
3: u0 = InitialCondition(ξ)
4: un = FVM(u0)
5: end for
6: µ = 1

M

∑M
i=1 ui

A main advantage is the simplicity of this approach. One does not need great understanding
of the method used to solve the Burgers equation as it can be treated as a black box. Further-
more, the Monte Carlo Method can easily be parallelized and is not affected by the curse of
dimensionality, which often causes problems if several random parameters need to be used.
The crucial disadvantage is, however, the relatively low convergence rate of 1√

M
, which can

be derived with the central limit theorem. Therefore, one should look at other methods, that
in the case of the Stochastic Galerkin Method potentially have spectral convergence rates.
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2.3 Stochastic Galerkin Method

The idea of the Stochastic Galerkin (SG) Method is to propagate the random parametriza-
tion through the model. Note that in the case of the Monte Carlo Method, the random vari-
able has been fixed before computation, allowing us to use standard finite volume methods.
Clearly, we need to derive new numerical schemes as well as find some kind of discretization
of the random parameter if we would like to propagate the randomness. This discretization
is performed by assuming that the random space is spanned by finitely many basis function,
meaning that

u(t, x, ξ) ≈ uN (t, x, ξ) =

N∑
i=0

ui(t, x)φi(ξ). (3)

Plugging this ansatz into the Burgers equation will lead to one equation for N + 1 unknown
coefficients ui. Additionally, this equation contains an unknown residual as we no longer
solve for the exact solution. N+1 equations for the coefficients can be obtained by projecting
the residual onto the space spanned by the basis functions. The coefficients should be chosen
such that the residual is orthogonal to this ansatz space with respect to an inner product
weighted by fΞ. This means one has to solve

∫ 1

−1

∂t( N∑
i=0

uiφi

)
+

1

2
∂x

 N∑
i,k=0

ukφkuiφi

φjfΞdξ = 0 (4)

for j = 0, . . . , N . If we assume the basis functions to be orthonormal with respect to the
weighted scalar product, simple transformations will lead to the system of equations

∂tu + ∂x

(
1

2
uTCu

)
= 0 (5a)

with C =

(∫ 1

−1
φiφjφkfΞdξ

)
i,j,k=0,...,N

(5b)

u = (ui)i=0,...,N (5c)

Note that for our uniform distribution of ξ, the corresponding basis functions are the Leg-
endre polynomials, normalized for the interval [−1, 1] and the density fΞ = 1

2 . The resulting
system no longer depends on the random parameter ξ. A discretization in time and space
can be performed as in standard finite volume schemes. Let

unj := u(tn, xj) (6)

meaning the coefficient vector evaluated at time tn in cell j. Let G(·, ·) be a numerical flux
which is consistent with the physical flux

F (u) =
1

2
uTCu. (7)

We then have the following algorithm.
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Algorithm 2 Stochastic Galerkin Method
1: compute C for the numerical flux
2: u0

j ← setupInitialConditions for all cells j
3: for n = 1 to NTimeSteps do
4: for j = 1 to NCells do
5: un+1

j = unj − ∆t
∆x(G(unj ,u

n
j+1)−G(unj−1,u

n
j ))

6: end for
7: end for

The moments of the underlying probability density function can now be easily computed
with the definition of uN . As an example, we compute the expectation value

E[u] ≈ E[uN ] =

∫ 1

−1

N∑
i=0

ui(t, x)φi(ξ)fΞ(ξ)dξ

=
N∑
i=0

ui(t, x)

∫ 1

−1
φi(ξ)fΞ(ξ)dξ

=
N∑
i=0

ui(t, x)

∫ 1

−1
φ0(ξ)︸ ︷︷ ︸

=1

φi(ξ)fΞ(ξ)dξ

= u0(t, x)

Obviously, the Stochastic Galerkin approach is more cumbersome than Monte Carlo, as one
first needs to derive and analyze the system (5). Additionally, adding more random inputs
will lead to huge systems. If, for example, we had P random parameters, the number of
coefficients would grow in the order of Np . This is called the curse of dimensionality.
The main advantage is that the potential rate of convergence is spectral for sufficiently
smooth data. This is due to the fact that we use orthogonal polynomials to approximate the
uncertainties in our solution. Our method actually returns approximations of the Fourier
coefficients which are the optimal choice for approximation, as they minimize the approx-
imation error with respect to the L2 norm. However, in some cases the L2 norm does not
seem to be a good choice of measuring the approximation error. This can be seen when
approximating discontinuities.

3 Intrusive Polynomial Moment Method

Two additional disadvantages of the Stochastic Galerkin Method are Gibbs phenomena as
well as the possibility of loosing hyperbolicity in the case of conservation equations. Gibbs
phenomena arise when trying to interpolate discontinuous data with the orthogonal basis
functions of SG. They can lead to a poor approximation of the unknown solution as oscilla-
tions or overshoots are often non-physical and from a mathematical point of view no entropy
solution. Furthermore, in the case of the Euler equations the oscillations can cause negative
densities. As a result, the problem will loose hyperbolicity and standard numerical scheme
will fail to compute the solution. The Intrusive Polynomial Moment Method (IPMM) aims
at resolving these two problems. It is motivated by the minimal entropy closures, which are
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used to ensure hyperbolicity in Transport Theory. In order to link IPMM to minimal entropy
closures, a short description of Transport Theory and similarities to Uncertainty Quantifi-
cation will be provided. The concepts of Transport Theory will be linked to Uncertainty
Quantification, focusing on the similarities of PN -closures and the SG approach. The ideas
to solve problems of the PN closure will then be used to derive IPMM.

3.1 Basic concepts of Transport Theory

Transport Theory describes the evolution of a probability density function f̃(t,x, c), which
is the probability density of a particle having velocity c being at position x at time t. This
probability density is then scaled with the number density n such that the scaled density f
fulfills

n(t,x) =

∫
R3

f(t,x, c)dc. (8)

Moreover, one has

n(t,x)u(t,x) =

∫
R3

cf(t,x, c)dc (9)

and

3

2
kBn(t,x)T (t,x) =

∫
R3

m

2
‖c− u‖2f(t,x, c)dc. (10)

u and T are the macroscopic velocities and temperature. kB is the Boltzmann constant. The
evolution of the scaled probability density function f is given by the Boltzmann equation

∂tf(t,x, c) + c · ∇xf(t,x, c) = J(f, f), (11)

where J(f, f) is the collision operator which describes the rate of change due to collisions.
It is difficult to solve this equation directly due to the complexity of the collision operator
and most importantly due to the high dimensionality caused by the additional dependence
on the three velocity components of c. This is why one takes moments of this equation with
respect to basis functions φi(c). Taking moments means that one multiplies the Boltzmann
equation (11) with φi(c) and integrates over c. First, we choose the basis functions to be the
so called collision invariants

φ1(c) = m (12a)
φ2,3,4(c) = mc (12b)

φ5(c) =
1

2
m‖c‖2 (12c)

with m being the molecular mass of each particle. This choice of basis functions is practical
as the collision term will vanish and the resulting moments will become physically intuitive
quantities. Therefore, we get
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∂tρ+∇x · (ρu) = 0, (13a)

∂t(ρu)+∇x ·
∫
R3

ccT fdc = 0, (13b)

∂t

(
3

2
nkBT +

1

2
ρ‖u‖2

)
+∇x ·

∫
R3

1

2
m‖c‖2cfdc = 0. (13c)

If one calculates the integral terms by expanding f around a local equilibrium for small
Knudsen numbers, one obtains the Navier-Stokes equations.

3.2 The PN -closure and its relation to SG

Now we want to derive a system of equations which provides us with moments up to a
desired order N . Therefore, we start with taking moments for arbitrary basis functions φi,
where i indicates the polynomial order of the basis function. For every i ∈ N0, we obtain the
equation

∂t

∫
R3

φi(c)f(t,x, c)dc +∇x ·
∫
R3

φi(c)cf(t,x, c)dc =

∫
R3

φi(c)J(f, f)dc. (14)

Taking a closer look at the first term of this equation and remembering that f is a scaled
probability density, we can interpret this term as the ith moment of f , which we will call mi.
In order to solve these equations, we need to choose a finite number of moments, hence we
only look at i = 0, . . . , N . The problem arising is the multiplication with c in the second term,
which means that the equation of the N th moment will contain some form of the (N + 1)st

moment for which we do not have an equation. Hence, we need to close this system by
choosing

f(t,x, c) ≈ fN (t,x, c) = G(t,x,m0(c), . . . ,mN (c)). (15)

One possible ansatz is to choose orthonormal basis functions φi and to choose the closure to
be

fPN (t,x, c) =
N∑
i=0

mi(t,x)φi(c). (16)

This seems plausible as the moments mi are nothing more than the Fourier coefficients of
the probability density f . The subscript PN is used because this closure is known as the
PN -closure. It is clear that the (N + 1)st moment in the equation for i = N will drop out due
to orthogonality and we are able to solve the system.
At this point, we would like to compare the concepts presented so far with those of Uncer-
tainty Quantification. In both cases we are interested in obtaining moments of some proba-
bility function. In Uncertainty Quantification an equation is given for the solution u(t, x, ξ)
which has an underlying probability density function for every x and t. If we are not in-
terested in the function u itself, but in for example expectation value and variance of u, we
are actually computing moments of the underlying probability density function. In contrast
to that, Transport Theory provides the Boltzmann equation which can be solved to directly
obtain the probability density function f . However, due to high dimensionality, we are also
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interested in the moments of f . Hence, in both cases we are looking for moments of a di-
rectly or indirectly given probability density.
When comparing the PN -closure with the SG Method, we directly see similarities. First of
all, in both cases we choose orthonormal basis functions φi in order to approximate our un-
known solution (compare equations (16) and (3)). If this (or any other) ansatz for f had been
introduced before taking moments with respect to the basis functions φi, the step of taking
moments could be seen as a Galerkin projection, meaning that we project the resulting resid-
ual onto the orthogonal space spanned by all φi with i ∈ {0, · · · , N}. This is exactly what we
did to derive the SG system.
Unfortunately, the PN -closure also suffers from deficiencies that we already pointed out for
the SG Method. Most importantly, the PN -closure can lead to probability densities which
are negative and therefore not admissible. However, this problem has been tackled for Trans-
port Theory by the introduction of minimal entropy closures in [3]. This approach has been
successfully applied to treat the problems of SG in [4], leading to the Intrusive Polynomial
Moment Method. In the following, the concept of minimal entropy closures for Transport
Theory and Uncertainty Quantification will be summarized.

3.3 The minimal entropy closure and its relation to IPMM

For the derivation of the minimal entropy closure, we recall the closure problem of equation
(14) and the ansatz to solve this problem given by equation (15). The idea of the minimal
entropy closures is to take the minimum of a mathematical entropy for the Boltzmann equa-
tion (11) to be the closure. However, we cannot choose any probability density function to
be the closure as we need to make sure that the moments of our closure match the computed
moments mi for i = 0, . . . , N . Note that we only need to match the moments up to order N
as we only compute the moment equations up to this order. One can clearly see the neces-
sity of this restriction when choosing the collision invariants (12) as basis functions, leading
to system (13). If we did not restrict the closure to match the given moments, this would
mean that the probability density function would not give us density ρ or momentum ρu as
moments, meaning that our choice of f is not admissible and the system for computing the
moments, namely (13), no longer matches our problem.
Let us call the chosen mathematical entropy H and the closure which we would like to de-
termine fME . We then need to determine fME by solving

arg min
f

H(f) (17a)

s.t. mi =

∫
R3

φifdc ∀i ∈ {0, · · · , N}. (17b)

This constraint optimization problem can be solved by minimizing the Lagrangian function

L(f,~λ) = H(f) +
N∑
i=0

λi

(
mi −

∫
R3

φifdc

)
. (18)

If we assume that the entropy H can be written as

H(f) =

∫
R3

h(f)dc, (19)
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the Gateaux derivative for an arbitrary direction g is then given by

δL(f ; g,~λ) =

∫
R3

(
h′(f)−

N∑
i=0

λiφi

)
gdc. (20)

In order for fME to be a minimizer of L, this derivative must be zero for all g, which means
that we must have

h′(fME) =
N∑
i=0

λiφi (21)

or

fME =
(
h′
)−1

(
N∑
i=0

λiφi

)
. (22)

A moment system derived with the help of an entropy closure has several desirable features.
For the choice h(f) = fln(f) − f a proof for hyperbolicity of the moment system and the
derivation of an entropy function can be found in [3]. This entropy for the moment system
is given by H , which we defined in (19).
Now let us assume that a similar concept for Uncertainty Quantification, leading to a hyper-
bolic moment system with an entropyH , can be derived. Obviously, this would be desirable,
as hyperbolicity will allow us to employ standard finite volume schemes to solve the system
and the entropy could be used to limit oscillations. Before going into detail, we take a step
back and write down our closure problem in the case of Uncertainty Quantification. By
taking moments of the model problem (1), where we replaced the Burgers with a general
physical flux f(u) we arrive at

∂t

∫ 1

−1
u(t,x, ξ)φi(ξ)fΞ(ξ)dξ + ∂x

∫ 1

−1
f(u(t,x, ξ))φi(ξ)fΞ(ξ)dξ = 0 (23)

We again identify the first term as the moment of the underlying probability density for u
and call it ui. In order to solve this equations we need to choose a finite number of moments,
hence we only look at i = 0, . . . , N . The second term should now only depend on moments
up to order N . The closure we choose is now motivated by the entropy closure, hence we
look for a closure minimizing a convex mathematical entropy H under the condition that
this closure returns our given moments. The entropy which we choose has the form

H(u(t, x, ξ)) =

∫ 1

−1
h(u(t, x, ξ))fΞ(ξ)dξ. (24)

We now proceed as in Transport Theory. In order to determine the minimizer of the con-
straint problem, we minimize the Lagrange function

L(u(t, x), λ) := H(u(t, x, ξ)) +

N∑
i=1

λi

(
ui −

∫ 1

−1
u(t, x, ξ)φi(ξ)fΞ(ξ)dξ

)
. (25)

The minimizer must fulfill

h′(uME) =

N∑
i=0

λiφi, (26)
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meaning that

uME = (h′)−1

(
N∑
i=0

λiφi

)
. (27)

The choice of this closure is called the Intrusive Polynomial Moment Method. Now let us
proof the desired properties of IPMM.

Theorem 3.1 The moment system given by IPMM is hyperbolic.

Proof Plugging the closure (27) into the moment system (23) leads to

∂t

∫ 1

−1
uME(Λ)φi(ξ)fΞ(ξ)dξ + ∂x

∫ 1

−1
f(uME(Λ))φi(ξ)fΞdξ = 0 (28)

where we defined Λ :=
∑N

k=0 λk(t, x)φk(ξ). We now derive a system for the unknowns λj
and show that it is hyperbolic. By differentiation and applying the chain rule, we get∑

j

∫ 1

−1
u′ME(Λ)φjφifΞdξ︸ ︷︷ ︸

=:Mij

∂tλj +
∑
j

∫ 1

−1
f ′(uME)u′ME(Λ)φjφifΞdξ︸ ︷︷ ︸

=:Aij

∂xλj = 0 (29)

We have that
u′ME(Λ) =

(
(h′)−1

)′
=

1

h′′(uME)
, (30)

which can be seen by differentiating s′((s′)−1(Λ)) = Λ with respect to Λ. Let us now take a
look at the matrix M. Obviously, M is symmetric and due to strict positive definiteness of h,
we can see from

dTMd =

∫ 1

−1

1

h′′(uME)

(∑
i

diφi

)2

fΞdξ > 0 (31)

that M is strictly positive definite. Clearly, A is symmetric. This is why we can write the
system as

∂t~λ+ M−
1
2M−

1
2AM−

1
2M

1
2︸ ︷︷ ︸

=:C

∂x~λ = 0, (32)

where M−1 = M−
1
2M−

1
2 with M−

1
2 symmetric as M−1 is positive definite. Therefore, C is

symmetric, meaning that C is diagonalizable with real eigenvalues, which means that the
system is hyperbolic. �

Theorem 3.2 The moment system given by IPMM fulfills the entropy inequality

∂tH(uME) + ∂xΨ(uME) ≤ 0, (33)

where

H(uME) =

∫ 1

−1
h(uME(Λ))fΞdξ (34)

and

Ψ(uME) =

∫ 1

−1
ψ(uME(Λ))fΞdξ. (35)

The functions h and ψ are the entropy and the entropy flux of the model problem with general physical
flux f .
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Proof Let us first recall the derivation of h and ψ for a general scalar model problem. If u is
not differentiable, we will not have a classical solution fulfilling

∂tu(t, x, ξ) + ∂xf(u(t, x, ξ)) = 0. (36)

Hence, we would like to look for the solution of the viscous problem

∂tu+ ∂xf(u) = ε∂xxu. (37)

An entropy can be derived by multiplication with h′(u), which leads to

∂th(u) + h′(u)f ′(u)︸ ︷︷ ︸
=:ψ̃′(u)

∂xu = εh′(u)∂xxu. (38)

Applying the reverse chain rule to the right hand side leads to

∂th(u) + ∂x(ψ̃ − εh′(u)∂xu︸ ︷︷ ︸
=:ψ(u)

) = −ε∂xuh′′(u)∂xu︸ ︷︷ ︸
≤0

. (39)

Therefore, the viscous limit, i.e. for ε→ 0 fulfills

∂th(u) + ∂xψ(u) ≤ 0, (40)

where equality holds for smooth data. Now let us derive the entropy counterpart of the
moment system. We start by taking moments of the viscous problem (37). Applying the
chain rule on f and uME yields∫ 1

−1
u′ME(Λ)∂tΛφifΞdξ +

∫ 1

−1
f ′(uME)u′ME(Λ)∂xΛφifΞdξ = ε

∫ 1

−1
uxxφifΞdξ. (41)

We now multiply both sides with λi and sum over i. Let us start with the first term, where
we get ∫ 1

−1
u′ME(Λ)∂tΛ

∑
i

λiφi︸ ︷︷ ︸
=h′(uME)

fΞdξ =

∫ 1

−1
∂th(uME(Λ(t, x, ξ)))fΞdξ. (42)

The second term of (41) becomes∫ 1

−1
f ′(uME)u′ME(Λ)∂xΛ

∑
i

λiφi︸ ︷︷ ︸
=h′(uME)

fΞdξ =

∫ 1

−1
f ′(uME)h′(uME)∂xuMEfΞdξ

=

∫ 1

−1
∂xψ̃(uME(Λ(t, x, ξ))))fΞdξ. (43)

The third term of (41) becomes

ε

∫ 1

−1
∂xxuME

∑
i

λiφi︸ ︷︷ ︸
=h′(uME)

fΞdξ = ε

∫ 1

−1
∂x(∂xuMEh

′(uME))− ∂xuME∂xh
′(uME)fΞdξ

= ε

∫ 1

−1
∂x(h′(uME)∂xuME)− ∂xuMEh

′′(uME)∂xuMEfΞdξ (44)

Plugging (42), (43),(44) into (41) and remembering that h is strictly convex yields the entropy
inequality (33). �
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The hyperbolicity of the system now guarantees that one can use standard numerical schemes
for solving the moment system. It is important to note that

h(u) =
u2

2
(45)

is a mathematical entropy of the scalar model problem. The same entropy function, where u
is replaced by the scaled probability density f is also an entropy for the Boltzmann equation.
Differentiating the entropy by u, or in the case of Transport Theory by f , shows that SG and
the PN-Closure both lead to a hyperbolic moment system fulfilling an entropy inequality if
a quadratic entropy is admissible. Note that a quadratic entropy is not always admissible if
u(t, x, ξ) is not scalar. Furthermore, the entropy inequality (33) can now be used to prevent
oscillations in the solution. Integration over the entire spatial domain and the time domain
[0, T ] leads to ∫ 1

−1

∫
R
h(u(Λ(T, x, ξ)))fΞdxdξ ≤

∫ 1

−1

∫
R
h(u(Λ(0, x, ξ)))fΞdxdξ. (46)

The fact that the entropy of the moment system is decreasing in time can now be used to
prevent oscillations in the solution u. Let us choose the entropy h to be

h(u) = −ln(u− u−)− ln(u+ − u). (47)

We now assume that the maximal value of the initial condition is smaller than u+ and the
minimal value is bigger than u−. In this case the entropy is finite. As the entropy is de-
creasing in time, the solution can not obtain values that are bigger than u+ or smaller than
u−, as in this case, the entropy would be bigger than the initial entropy. This means that
oscillations are limited by the entropy decrease. It is important to point out that Theorem 3.2
can easily be extended to systems. In this case it is not straight forward to find an entropy,
which satisfies the entropy inequality (40) and at the same time prevents oscillations.
We now look at an implementation of IPMM. Let G(·, ·) be a numerical flux which is consis-
tent with the physical flux of our moment system, namely

F (~λ) = ∂x

∫ 1

−1
f

(
uME

(∑
k

λkφk

))
φi(ξ)fΞdξ (48)

An algorithm for this method can now be written as

Algorithm 3 IPMM

1: ~λ0
l =

(∫ 1
−1 s

′ (u0(xl, ξ))φjfΞdξ
)
j=0,...,N

2: for n = 1 to NTimeSteps do
3: for l = 1 to NCells do
4: unl =

(∫ 1
−1(s′)−1

(∑N
k=0 λk(t

n, xl)φk

)
φjfΞdξ

)
j=0,...,N

5: un+1
l = unl −

∆t
∆x(G(~λnl ,

~λnl+1)−G(~λnl−1,
~λnl ))

6: ~λn+1
l = arg minλ L

(
uN

(∑N
k=0 λkφk

)
, ~λ
)

7: end for
8: end for
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The last step inside the loop is necessary as the classical finite volume update only provides
us with the updated moments u. The corresponding Lagrange coefficients can be obtained
by solving the dual problem.

4 Results

In the last section, we will now look at and compare the solutions each method provides for
the model problem (1). We choose the left state of our initial condition uL to be 12.0 and
the right state uR to be 3.0. Furthermore, x0 is chosen to be 0.5, x1 has a value of 1.5 and σ
is 0.2. The x−space, which ranges from 0.0 to 3.0 is discretized using 100 cells. Let us first
take a look at the expectation value, which can also be computed by using the Monte Carlo
Method. We can compare all computed expectation values with the exact solution, which
can be calculated with the help of characteristics. It can be shown that at time t∗ = 1

9 , a shock
will form. For all times after t∗ the exact entropy solution can be computed with the Rankine
Hugoniot condition. In order to demonstrate the disadvantages of Stochastic Galerkin we
will also look at the solution for t2 > t∗. The IPMM method uses parameters u− = 2.0 and
u+ = 13.0 to prevent significant oscillations. One can find the results in Figures 1. It can
be seen that all methods return a good approximation of the exact expectation value for t1.
In this case, the SG method seems to be the best choice, as the error with respect to the L2

norm and the runtime are the smallest: The runtime of SG is 0.6973, followed by the runtime
of IPMM, which is 266.0448, and the runtime of MC, which is 535.3233 seconds. The errors
are given by 0.17721 for SG, 0.20202 for IPMM and 0.24251 for MC. Even though the Monte
Carlo Method does not seem to be a good choice to solve this problem, it must be stated that
its implementation was by far the easiest, followed by the implementation of the Stochastic
Galerkin Method. Another advantage of the Monte Carlo Method can be seen by looking
at the results at time t2. Here, the SG Method yields a quite bad approximation. The error
for SG is given by 0.53336, the error of IPMM is 0.26259 and the error of MC is 0.33678. It
is important to note that the SG result has values, which are bigger than those of the initial
conditions. This behavior is due to oscillations, which arise when approximating disconti-
nuities with the help of orthogonal polynomials. One can see the inadequate approximation
behaviour by looking at Figures 2, in which the solution is plotted for ξ ∈ {−1, 0, 1}. While
at t1, both methods show small oscillations in their result, a clear difference between those
two methods can be seen for t2. Here, we can see strong oscillations for SG, whereas the os-
cillations of IPMM do not seem to be amplified over time. To actually see the approximation
properties in the random space, we take a look at the solution plotted at two fixed critical
values of x, which can be found in Figures 3. For time t1, the fixed x−value is 1.6364, where
the solution is not differentiable. Even though both methods cannot interpolate such an un-
smooth function, the approximations of both methods seem to be reasonable. For time t2,
a critical region can be found at x = 2.0606. Here, we need to approximate a discontinuity,
which for both methods leads to overshoots. Those overshoots are limited by u− and u+

for the IPMM Method. The approximation seems to be adequate for a shock, even though
the shock appears to be smeared out. If we took more polynomials for approximation, we
would see a sharper approximation of the shock. The solution of the SG Method shows clear
overshoots, which are not limited.
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(a) Expecation values for t1 = 0.04 (b) Expecation values for t2 = 0.14

Figure 1: Exact expectation values compared with results from Monte Carlo, Stochatic
Galerkin and IPMM at two different times. Both, SG and IPMM use polynomials up to
order 2. The Monte Carlo Method uses 1000 samples.

(a) t1 = 0.04 (b) t2 = 0.14

Figure 2: Exact solution u for fixed values ξ ∈ {−1, 0, 1}, as well as the approximations
provided by SG and IPMM. Both, SG and IPMM use polynomials up to order 2.
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(a) t1 = 0.04, x = 1.6364 (b) t2 = 0.14, x = 2.0606

Figure 3: Plots of the random space for fixed t and x. Both, SG and IPMM use polynomials
up to order 2.

5 Conclusion

In this paper, we have examined three different methods of Uncertainty Quantification and
compared their behaviour when solving the Burgers equation with uncertain initial con-
ditions. We have seen that while the Stochastic Galerkin Methods appears to be a good
choice for sufficiently smooth data, it will yield large errors as soon as a shock appears in
the solution. The Monte Carlo method has proven to be quite robust and easy to imple-
ment. However, it will take a long time to obtain a good approximation, which is caused
by its small convergence rate. The findings of Transport Theory have been used to derive
the Intrusive Polynomial Moment Method, which fulfills an entropy inequality. With this
inequality we were able to limit oscillations and therefore obtained a good approximation
of the unknown solution. It must be pointed out that the implementation of this method is
not as straight forward as the implementation of Monte Carlo or SG. Furthermore, the run-
times of the Intrusive Polynomial Moment Method are by far larger than those of Stochastic
Galerkin, which is caused by the optimization routine used to find the appropriate Lagrange
multipliers. Especially if we had multiple random dimensions, it might be a better choice
to use the Monte Carlo Method, which is actually a common problem in Uncertainty Quan-
tification. However, IPMM appears to have some potential in the presence of a high dimen-
sional random space, which can be seen in [4]. Here, convergence rates have been studied
for smooth initial conditions, for which we can expect spectral convergence if we use SG or
IPMM. For the smooth test case, IPMM showed better convergence than Stochastic Galerkin,
which is why for smooth data less polynomial orders suffice to obtain good results. Hence,
the number of unknown coefficients can be decreased if we use IPMM, which is especially
useful in the case of multiple random variables. Furthermore, we have stated that Stochas-
tic Galerkin is no longer an entropy closure if a quadratic function is not the entropy of the
model problem. This is often the case for systems of equations. In [4], the Euler Equations
have been investigated, where hyperbolicity is only preserved in the case of IPMM. There-
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fore, one can conclude that the Intrusive Polynomial Moment Method should be used for
systems of equations, in the presence of discontinuities in the random space as well as for
multiple random dimensions, if we do not want to use the Monte Carlo Method.
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