RWITHAACHEN UNIVERSITY

On an Operator Projection Framework for Kinetic Equations

Julian Köllermeier

December 11th, 2014

RWTH Aachen University

Julian Köllermeier

1 / 29

Operator Projection Framework

Outline

2 Quadrature-Based Cut-Off

- 3 Quadrature-Based Projection
- Operator Projection Framework

Boltzmann Equation Transformation of Velocity Variable Ansatz and Expansion Quadrature-Based Moment Equations

Review of Quadrature-Based Moment Equations

Review Quadrature-Based Cut-Off Quadrature-Based Projection

Operator Projection Framework

Boltzmann Equation Transformation of Velocity Variable Ansatz and Expansion Quadrature-Based Moment Equations

Boltzmann Transport Equation

$$rac{\partial}{\partial t}f(t,\mathbf{x},\mathbf{c})+c_irac{\partial}{\partial x_i}f(t,\mathbf{x},\mathbf{c})=S(f)$$

PDE for particles' probability density function $f(t, \mathbf{x}, \mathbf{c})$

- Describes change of f due to transport and collisions
- Collision operator S
- $\mathbf{x} \in \mathbb{R}^{d}, \mathbf{c} \in \mathbb{R}^{d}$
- No external force

Review

Quadrature-Based Cut-Off Quadrature-Based Projection Operator Projection Framework Boltzmann Equation Transformation of Velocity Variable Ansatz and Expansion Quadrature-Based Moment Equations

Transformation of Velocity Variable (1D)

Boltzmann Equation Transformation of Velocity Variable Ansatz and Expansion Quadrature-Based Moment Equations

Transformation of Velocity Variable (1D)

Boltzmann Equation Transformation of Velocity Variable Ansatz and Expansion Quadrature-Based Moment Equations

Transformation of Velocity Variable (1D)

Lagrangian velocity space reduces numerical complexity

Boltzmann Equation Transformation of Velocity Variable Ansatz and Expansion Quadrature-Based Moment Equations

Transformation of Boltzmann Equation

$$\frac{\partial}{\partial t}f(t,x,c) + c\frac{\partial}{\partial x}f(t,x,c) = 0$$

$$\downarrow$$

$$f + \sqrt{\theta}\xi\partial_x f + \partial_\xi f\left(-\frac{1}{\sqrt{\theta}}\left(D_t v + \sqrt{\theta}\xi\partial_x v\right) - \frac{1}{2\theta}\xi\left(D_t \theta + \sqrt{\theta}\xi\partial_x \theta\right)\right) = 0$$

- Additional terms from chain rule for f, with $\xi(t, x, c) := \frac{c v(t, x)}{\sqrt{\theta(t, x)}}$
- Convective time derivative $D_t := \partial_t + v \partial_x$

D₊

• Additional equations for v and θ from definition of moments

Review

Quadrature-Based Cut-Off Quadrature-Based Projection Operator Projection Framework Boltzmann Equation Transformation of Velocity Variable Ansatz and Expansion Quadrature-Based Moment Equations

Ansatz and Expansion

Expansion

$$f(t,x,\xi) = \sum_{i=0}^{n} f_i(t,x) \mathcal{H}_i(\xi)$$

Weight and basis function

$$w(\xi) = rac{1}{\sqrt{2\pi}} \exp\left(-rac{\xi^2}{2}
ight)$$

$$\mathcal{H}_k(\xi) = (-1)^k \frac{d^k w(\xi)}{d\xi^k} = w(\xi) He_k(\xi)$$

Boltzmann Equation Transformation of Velocity Variable Ansatz and Expansion Quadrature-Based Moment Equations

Quadrature-Based Moment Equations

Standard approach by GRAD [5]

Multiplication with test function $He_k(\xi)$ and integration over ξ

$$\oint He_k(\xi)d\xi$$

Boltzmann Equation Transformation of Velocity Variable Ansatz and Expansion Quadrature-Based Moment Equations

Quadrature-Based Moment Equations

Standard approach by GRAD [5]

Multiplication with test function $He_k(\xi)$ and integration over ξ

·
$$He_k(\xi)d\xi$$

Quadrature-Based Moment Method (QBME) [1]

Substitute integration by Gaussian quadrature

$$\int_{\mathbb{R}} \cdot He_k(\xi) d\xi pprox \sum_{k=0} w_k \cdot |_{\xi_k} He_k(\xi_k)$$

QBME result

Globally hyperbolic equations

Review

Quadrature-Based Cut-Off Quadrature-Based Projection Operator Projection Framework Boltzmann Equation Transformation of Velocity Variable Ansatz and Expansion Quadrature-Based Moment Equations

Further work on QBME

Further work on QBME

- Extension of framework to multi-dimensional case
- Hyperbolicity proof for multi-dimensional case
- Development of diagram notation to visualize QBME derivation

Problems

- Multi-dimensional systems not rotationally invariant
- Depends on existence of Gaussian quadrature rule
- Generalization to other equations, weights, basis functions

Preliminaries Cut-Off in GRAD's method Cut-Off in Quadrature-Based Method Cut-Off in CAI's Method

Quadrature-Based Cut-Off

Preliminaries Cut-Off in GRAD's method Cut-Off in Quadrature-Based Method Cut-Off in CAI's Method

Towards a Quadrature-Based Cut-Off

$$D_t f + \sqrt{\theta} \xi \partial_x f + \partial_\xi f \left(-\frac{1}{\sqrt{\theta}} \left(D_t v + \sqrt{\theta} \xi \partial_x v \right) - \frac{1}{2\theta} \xi \left(D_t \theta + \sqrt{\theta} \xi \partial_x \theta \right) \right) = 0$$

Preliminaries Cut-Off in GRAD's method Cut-Off in Quadrature-Based Method Cut-Off in CAI's Method

Towards a Quadrature-Based Cut-Off

$$D_t f + \sqrt{\theta} \xi \partial_x f + \partial_\xi f \left(-\frac{1}{\sqrt{\theta}} \left(D_t v + \sqrt{\theta} \xi \partial_x v \right) - \frac{1}{2\theta} \xi \left(D_t \theta + \sqrt{\theta} \xi \partial_x \theta \right) \right) = 0$$

Use recursion formulas for basis function

• Basis function:
$$\mathcal{H}_k(\xi) := \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\xi^2}{2}\right) He_k(\xi)$$

- Derivative of basis function: $\frac{\partial \mathcal{H}_k(\xi)}{\partial \xi} = -\mathcal{H}_{k+1}(\xi)$
- ξ multiplication: $\xi \cdot \mathcal{H}_k(\xi) = \mathcal{H}_{k+1}(\xi) + k\mathcal{H}_{k-1}(\xi)$

Properties of Gaussian quadrature rule

Gaussian quadrature points are zeros of $\mathcal{H}_{n+1}(\xi)$, i.e. $\mathcal{H}_{n+1}(\xi_k) = 0$

Preliminaries Cut-Off in GRAD's method Cut-Off in Quadrature-Based Method Cut-Off in CAI's Method

Cut-Off Procedure

Use recursion formulas for basis function

- Expand f with basis functions
- Insert expanded f into transformed Boltzmann equation
- Perform calculations using recursion formulas and derivative
- Do a projection using multiplication and integration or quadrature

Properties of Gaussian quadrature rule

Gaussian quadrature points are zeros of $\mathcal{H}_{n+1}(\xi)$, i.e. $\mathcal{H}_{n+1}(\xi_k) = 0$

Remember

$$rac{\partial \mathcal{H}_k(\xi)}{\partial \xi} = -\mathcal{H}_{k+1}(\xi), \qquad \quad \xi \cdot \mathcal{H}_k(\xi) = \mathcal{H}_{k+1}(\xi) + k\mathcal{H}_{k-1}(\xi)$$

Preliminaries Cut-Off in GRAD's method Cut-Off in Quadrature-Based Method Cut-Off in CAI's Method

Preliminaries Cut-Off in GRAD's method Cut-Off in Quadrature-Based Method Cut-Off in CAI's Method

Preliminaries Cut-Off in GRAD's method Cut-Off in Quadrature-Based Method Cut-Off in CAI's Method

Preliminaries Cut-Off in GRAD's method Cut-Off in Quadrature-Based Method Cut-Off in CAI's Method

Preliminaries Cut-Off in GRAD's method Cut-Off in Quadrature-Based Method Cut-Off in CAI's Method

Cut-Off in GRAD's method

Julian Köllermeier 13 / 29 Operator Projection Framework

Preliminaries Cut-Off in GRAD's method Cut-Off in Quadrature-Based Method Cut-Off in CAI's Method

Preliminaries Cut-Off in GRAD's method Cut-Off in Quadrature-Based Method Cut-Off in CAI's Method

Preliminaries Cut-Off in GRAD's method Cut-Off in Quadrature-Based Method Cut-Off in CAI's Method

Preliminaries Cut-Off in GRAD's method Cut-Off in Quadrature-Based Method Cut-Off in CAI's Method

Preliminaries Cut-Off in GRAD's method Cut-Off in Quadrature-Based Method Cut-Off in CAI's Method

Preliminaries Cut-Off in GRAD's method Cut-Off in Quadrature-Based Method Cut-Off in CAI's Method

Cut-Off in Quadrature-Based Method

Julian Köllermeier 14 / 29 Operator Projection Framework

Preliminaries Cut-Off in GRAD's method Cut-Off in Quadrature-Based Method Cut-Off in CAI's Method

Cut-Off in Quadrature-Based Method

Julian Köllermeier 14 / 29 Operator Projection Framework

Preliminaries Cut-Off in GRAD's method Cut-Off in Quadrature-Based Method Cut-Off in CAI's Method

Cut-Off in CAI's Method

Julian Köllermeier 15 / 29 Operator Projection Framework

Preliminaries GRAD's Projection Quadrature-Based Projection CAI's Projection (HME)

Quadrature-Based Projection

Preliminaries GRAD's Projection Quadrature-Based Projection CAI's Projection (HME)

Towards a Quadrature-Based Projection [3]

$$\frac{\partial f}{\partial t} + c \frac{\partial f}{\partial x} = 0$$

• Use basis functions and recursion formulas

• Define unknowns $\mathbf{w} = (
ho, v, heta, f_3, \ldots) \in \mathbb{R}^{\infty}$

Preliminaries GRAD'S Projection Quadrature-Based Projection CAI'S Projection (HME)

Towards a Quadrature-Based Projection [3]

$$\frac{\partial f}{\partial t} + c \frac{\partial f}{\partial x} = 0$$

• Use basis functions and recursion formulas

• Define unknowns $\mathbf{w} = (\rho, v, \theta, f_3, \ldots) \in \mathbb{R}^{\infty}$

$$\mathbf{M}_{1}\mathbf{D}\frac{\partial\mathbf{w}}{\partial t} + \mathbf{M}_{2}\mathbf{M}_{1}\mathbf{D}\frac{\partial\mathbf{w}}{\partial x} = 0$$

Preliminaries GRAD's Projection Quadrature-Based Projection CAI's Projection (HME)

GRAD's Projection

$$\mathbf{M}_{1}\mathbf{D}\frac{\partial\mathbf{w}}{\partial t} + \mathbf{M}_{2}\mathbf{M}_{1}\mathbf{D}\frac{\partial\mathbf{w}}{\partial x} = 0$$

Preliminaries GRAD's Projection Quadrature-Based Projection CA1's Projection (HME)

GRAD's Projection

$$(\mathbf{M}_{1}\mathbf{D})_{N}\frac{\partial \mathbf{w}_{N}}{\partial t} + (\mathbf{M}_{2}\mathbf{M}_{1}\mathbf{D})_{N}\frac{\partial \mathbf{w}_{N}}{\partial x} = 0$$

Preliminaries GRAD's Projection Quadrature-Based Projection CA1's Projection (HME)

GRAD's Projection

$$\left(\mathsf{M}_{1}\mathsf{D}\right)_{N}\frac{\partial \mathsf{w}_{N}}{\partial t}+\left(\mathsf{M}_{2}\mathsf{M}_{1}\mathsf{D}\right)_{N}\frac{\partial \mathsf{w}_{N}}{\partial x}=0$$

Define projection matrix and its inverse

$$\begin{aligned} \mathbf{P}_N &= (\mathbf{I}_N, \mathbf{0}) \in \mathbb{R}^{N \times \infty} \\ \mathbf{P}_N^T &= \begin{pmatrix} \mathbf{I}_N \\ \mathbf{0} \end{pmatrix} \in \mathbb{R}^{\infty \times N} \end{aligned}$$

Preliminaries GRAD's Projection Quadrature-Based Projection CA1's Projection (HME)

GRAD's Projection

$$\left(\mathsf{M}_{1}\mathsf{D}\right)_{N}\frac{\partial \mathsf{w}_{N}}{\partial t}+\left(\mathsf{M}_{2}\mathsf{M}_{1}\mathsf{D}\right)_{N}\frac{\partial \mathsf{w}_{N}}{\partial x}=0$$

Define projection matrix and its inverse

$$\begin{aligned} \mathbf{P}_N &= (\mathbf{I}_N, \mathbf{0}) \in \mathbb{R}^{N \times \infty} \\ \mathbf{P}_N^T &= \begin{pmatrix} \mathbf{I}_N \\ \mathbf{0} \end{pmatrix} \in \mathbb{R}^{\infty \times N} \end{aligned}$$

Apply projection to parts of the equation

Only locally hyperbolic, loss of hyperbolicity possible

Preliminaries GRAD's Projection Quadrature-Based Projection CAI's Projection (HME)

Quadrature-Based Projection

$$\mathbf{M}_{1}\mathbf{D}\frac{\partial\mathbf{w}}{\partial t} + \mathbf{M}_{2}\mathbf{M}_{1}\mathbf{D}\frac{\partial\mathbf{w}}{\partial x} = 0$$

Preliminaries GRAD's Projection Quadrature-Based Projection CAI's Projection (HME)

Quadrature-Based Projection

$$(\mathbf{M}_1)_N (\mathbf{D})_N \frac{\partial \mathbf{w}_N}{\partial t} + (\mathbf{M}_2)_N (\mathbf{M}_1)_N (\mathbf{D})_N \frac{\partial \mathbf{w}_N}{\partial x} = 0$$

Preliminaries GRAD's Projection Quadrature-Based Projection CAI's Projection (HME)

Quadrature-Based Projection

$$(\mathbf{M}_1)_N (\mathbf{D})_N \frac{\partial \mathbf{w}_N}{\partial t} + (\mathbf{M}_2)_N (\mathbf{M}_1)_N (\mathbf{D})_N \frac{\partial \mathbf{w}_N}{\partial x} = 0$$

Same projection matrix and inverse

$$\begin{aligned} \mathbf{P}_N &= (\mathbf{I}_N, \mathbf{0}) \in \mathbb{R}^{N \times \infty} \\ \mathbf{P}_N^T &= \begin{pmatrix} \mathbf{I}_N \\ \mathbf{0} \end{pmatrix} \in \mathbb{R}^{\infty \times N} \end{aligned}$$

Preliminaries GRAD's Projection Quadrature-Based Projection CAI's Projection (HME)

Quadrature-Based Projection

$$(\mathbf{M}_{1})_{N}(\mathbf{D})_{N}\frac{\partial \mathbf{w}_{N}}{\partial t} + (\mathbf{M}_{2})_{N}(\mathbf{M}_{1})_{N}(\mathbf{D})_{N}\frac{\partial \mathbf{w}_{N}}{\partial x} = 0$$

Same projection matrix and inverse

$$\begin{aligned} \mathbf{P}_N &= (\mathbf{I}_N, \mathbf{0}) \in \mathbb{R}^{N \times \infty} \\ \mathbf{P}_N^T &= \begin{pmatrix} \mathbf{I}_N \\ \mathbf{0} \end{pmatrix} \in \mathbb{R}^{\infty \times N} \end{aligned}$$

- Globally hyperbolic
- Changes last two equations

Preliminaries GRAD's Projection Quadrature-Based Projection CAI's Projection (HME)

CAI's Projection (HME)

$$\left(\mathsf{M}_{1}\mathsf{D}\right)_{N}\frac{\partial \mathsf{w}_{N}}{\partial t}+\left(\mathsf{M}_{2}\right)_{N}\left(\mathsf{M}_{1}\mathsf{D}\right)_{N}\frac{\partial \mathsf{w}_{N}}{\partial x}=0$$

Preliminaries GRAD's Projection Quadrature-Based Projection CAI's Projection (HME)

CAI's Projection (HME)

$$\left(\mathsf{M}_{1}\mathsf{D}\right)_{N}\frac{\partial \mathsf{w}_{N}}{\partial t}+\left(\mathsf{M}_{2}\right)_{N}\left(\mathsf{M}_{1}\mathsf{D}\right)_{N}\frac{\partial \mathsf{w}_{N}}{\partial x}=0$$

Same projection matrix and inverse

$$\begin{aligned} \mathbf{P}_N &= (\mathbf{I}_N, \mathbf{0}) \in \mathbb{R}^{N \times \infty} \\ \mathbf{P}_N^T &= \begin{pmatrix} \mathbf{I}_N \\ \mathbf{0} \end{pmatrix} \in \mathbb{R}^{\infty \times N} \end{aligned}$$

Preliminaries GRAD's Projection Quadrature-Based Projection CAI's Projection (HME)

CAI's Projection (HME)

$$\left(\mathsf{M}_{1}\mathsf{D}\right)_{N}\frac{\partial\mathsf{w}_{N}}{\partial t}+\left(\mathsf{M}_{2}\right)_{N}\left(\mathsf{M}_{1}\mathsf{D}\right)_{N}\frac{\partial\mathsf{w}_{N}}{\partial x}=0$$

Same projection matrix and inverse

$$\begin{aligned} \mathbf{P}_N &= (\mathbf{I}_N, \mathbf{0}) \in \mathbb{R}^{N \times \infty} \\ \mathbf{P}_N^T &= \begin{pmatrix} \mathbf{I}_N \\ \mathbf{0} \end{pmatrix} \in \mathbb{R}^{\infty \times N} \end{aligned}$$

- Globally hyperbolic
- Changes last equation
- Quadrature-based method can be written with different \mathbf{P}_N

Generalization of the framework Step-by-step procedure Summary

Operator Projection Framework

Julian Köllermeier 21 / 29 Operator Projection Framework

Generalization of the framework Step-by-step procedure Summary

Generalization of the framework

Aim

Generalize projection procedure to include all methods in one framework that also allows derivation of new models

Inputs

- Kinetic equation, e.g. $\partial_t f + c \partial_x f = 0$
- Weight function and basis, e.g. $w(\xi) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\xi^2}{2}\right)$, $\xi = \frac{c-v(t,x)}{\sqrt{\theta(t,x)}}$ and weighted Hermite polynomial basis $\mathcal{H}_i(\xi)$
- Projection operator, e.g. Cut-off
- Projection strategy, e.g. according to QBME or HME

Generalization of the framework Step-by-step procedure Summary

Projection Operator

Expansion

$$f(t,x,\xi) = \sum_{i=1}^{\infty} f_i(t,x) \Phi_i(\xi) = \langle \mathbf{f}, \mathbf{\Phi} \rangle_{\infty}$$

Projected expansion, e.g. cut-off

$$\mathcal{P}f(t,x,\xi) = \sum_{i=1}^{N} \widetilde{f}_i(t,x) \widetilde{\Phi}_i(\xi) = \langle \mathbf{P}\mathbf{f}, \mathbf{P}\mathbf{\Phi} \rangle_N$$

Example: Cut-off projection

$$\mathbf{P} = (\mathbf{I}_N, \mathbf{0}) \in \mathbb{R}^{N \times \infty}$$

Generalization of the framework Step-by-step procedure Summary

Step-by-step procedure I: Setup

- 1. Choose weight function $w(\xi)$ and basis Φ of weighted polynomial space
- 2. Choose subspace and determine projection operator $\ensuremath{\mathcal{P}}$
- 3. Expand distribution function $f(t, x, \xi) = \langle \mathbf{f}, \mathbf{\Phi} \rangle_{\infty}$
- 4. Eliminate unknowns using definition of moments ${\bf f} \rightarrow {\bf w}$
- 5. Project distribution function $\mathcal{P}f(t, x, \xi) = \langle \mathbf{P}f, \mathbf{P}\Phi \rangle_N$

Generalization of the framework Step-by-step procedure Summary

Step-by-step procedure II: Derivation

 $\partial_t f + c \partial_x f = 0$

Generalization of the framework Step-by-step procedure Summary

Step-by-step procedure II: Derivation

$$\partial_t f + c \partial_x f = 0$$

- 6. Compute derivatives $\frac{\partial}{\partial s} \mathcal{P}f(t, x, \xi) = \langle \mathbf{D}\mathbf{P}^T \frac{\partial}{\partial s} \mathbf{P}\mathbf{w}, \mathbf{\Phi} \rangle_{\infty}$
- 7. Project derivatives $\mathcal{P}\frac{\partial}{\partial s}\mathcal{P}f(t, x, \xi) = \langle \mathbf{P}\mathbf{D}\mathbf{P}^T\frac{\partial}{\partial s}\mathbf{P}\mathbf{w}, \mathbf{P}\mathbf{\Phi}\rangle_N$
- 8. Multiply with velocity $c \mathcal{P} \frac{\partial}{\partial s} \mathcal{P} f(t, x, \xi) = \langle \mathbf{M} \mathbf{P}^T \mathbf{P} \mathbf{D} \mathbf{P}^T \frac{\partial}{\partial s} \mathbf{P} \mathbf{w}, \mathbf{\Phi} \rangle_{\infty}$
- 9. Project product $\mathcal{P}c\mathcal{P}\frac{\partial}{\partial s}\mathcal{P}f(t, x, \xi) = \langle \mathbf{P}\mathbf{M}\mathbf{P}^{\mathsf{T}}\mathbf{P}\mathbf{D}\mathbf{P}^{\mathsf{T}}\frac{\partial}{\partial s}\mathbf{P}\mathbf{w}, \mathbf{P}\mathbf{\Phi}\rangle_{N}$
- 10. Match coefficients to obtain regularized equations

$$\mathbf{P}\mathbf{D}\mathbf{P}^{T}\frac{\partial}{\partial t}\mathbf{P}\mathbf{w} + \mathbf{P}\mathbf{M}\mathbf{P}^{T}\mathbf{P}\mathbf{D}\mathbf{P}^{T}\frac{\partial}{\partial x}\mathbf{P}\mathbf{w} = \mathbf{0}$$

Generalization of the framework Step-by-step procedure Summary

Application of the framework

Existing models

- Hyperbolic moment equations (HME) (CAI et al. [4])
- Anisotropic hyperbolic moment equations (AHME)
- GRAD 13 hyperbolic regularization
- Maximum entropy method
- Quadrature-based moment equations (QBME) (1D)

Generalization of the framework Step-by-step procedure Summary

Application of the framework

Existing models

- Hyperbolic moment equations (HME) (CAI et al. [4])
- Anisotropic hyperbolic moment equations (AHME)
- GRAD 13 hyperbolic regularization
- Maximum entropy method
- Quadrature-based moment equations (QBME) (1D)

New models

Ο ...

- Regularization of GRAD's ordered moment systems (G13, G26, G45)
- multi-dimensional Quadrature-based moment equations

Generalization of the framework Step-by-step procedure Summary

Conclusion

Julian Köllermeier 27 / 29 Operator Projection Framework

Generalization of the framework Step-by-step procedure Summary

Summary and Further Work

From quadrature to projection operators

- Includes almost all existing models
- Easy derivation of new models
- Global hyperbolicity and rotational invariance

Further Work

• Numerics for the (non-conservative) hyperbolic PDE system

Thank you for your attention

Generalization of the framework Step-by-step procedure Summary

References

J. Koellermeier, R.P. Schaerer and M. Torrilhon

A Framework for Hyperbolic Approximation of Kinetic Equations Using Quadrature-Based Projection Methods, Kinet. Relat. Mod. 7(3) (2014), 531-549

J. Koellermeier, M. Torrilhon

Hyperbolic Moment Equations Using Quadrature-Based Projection Methods, 29th Rarefied Gas Dynamics, Xi'an (2014)

A framework on the globally hyperbolic moment method for kinetic equations using operator projection method in preparation

Z. Cai, Y. Fan and R. Li

Globally hyperbolic regularization of Grad's moment system, Comm. Pure Appl. Math., 67(3) (2014), 464–518.

H. Grad

On the kinetic theory of rarefied gases, Comm. Pure Appl. Math., 2(4) (1949), 331-407.