Numerical Solution of Hyperbolic Moment Equations for the Boltzmann Equation

Julian Koellermeier

October 8th, 2015

Peking University, Beijing
Introduction
Introduction

Aim

Derive hyperbolic PDE systems for rarefied gas flows

Extension of standard fluid dynamic equations

- Reentry flows
- Micro channel flows
Introduction

Aim

Derive hyperbolic PDE systems for rarefied gas flows

Extension of standard fluid dynamic equations

- Reentry flows
- Micro channel flows

Importance of Hyperbolicity

- Well-posedness and stability of the solution
Goal
solve and simulate flow problems involving rarefied gases

Knudsen number
distinguish flow regimes by orders of the Knudsen number $Kn = \frac{\lambda}{L}$
- λ is the mean free path length
- L is a reference length

Flow regimes
- $Kn \leq 0.1$: continuum model; Navier-Stokes Equation and extensions
- $Kn \geq 0.1$: rarefied gas; Boltzmann Equation or Monte-Carlo simulations
Applications for large $Kn = \frac{\lambda}{L}$

- large λ: rarefied gases, atmospheric reentry flights
- small L: micro-scale applications, Knudsen pump, MEMS

Tasks

- computation of mass flow rates
- calculation of shock layer thickness
- accurate prediction of heat flux
Boltzmann Transport Equation

\[\frac{\partial f(t, x, c)}{\partial t} + c_i \frac{\partial f(t, x, c)}{\partial x_i} = S(f) \]

PDE for particles’ probability density function \(f(t, x, c) \)

- Describes change of \(f \) due to transport and collisions
- Collision operator \(S \)
- Usually a 7-dimensional phase space
Model Order Reduction

Ansatz

\[f(t, x, c) = \sum_{i=0}^{M} f_i(t, x) \mathcal{H}^{\rho, v, \theta}_i (c) \]
Model Order Reduction

Ansatz

\[f(t, x, c) = \sum_{i=0}^{M} f_i(t, x) \mathcal{H}_{i}^{\rho, v, \theta} (c) \]

Reduction of Complexity

One PDE for \(f(t, x, c) \) that is 7-dimensional
Model Order Reduction

Ansatz

\[f(t, x, c) = \sum_{i=0}^{M} f_i(t, x) \mathcal{H}_{i}^{\rho, v, \theta}(c) \]

Reduction of Complexity

One PDE for \(f(t, x, c) \) that is 7-dimensional

\[\Downarrow \]

System of PDEs for \(\rho(t, x), v(t, x), \theta(t, x), f_i(t, x) \) that is 4-dimensional
Review of Hyperbolic Moment Equations
History of Hyperbolic Moment Equations

Grad’s Method \([\textit{Grad}, 1949]\)
- Galerkin projection with Hermite polynomials, locally hyperbolic

Hyperbolic Moment Equations (HME) \([\textit{Cai} \text{ et al.}, 2012]\)
- modification of system matrix

Quadrature-Based Moment Equations (QBME) \([\textit{JK}, 2013]\)
- use of Gaussian quadrature

Operator Projection framework (OP) \([\textit{Fan}, \text{JK et al.}, 2014]\)
- application of projections
State of the art

Moment equations

\[D \frac{\partial}{\partial t} w + MD \frac{\partial}{\partial x} w = 0 \]

- \(P \) projection matrix
- \(w := P\tilde{w} \) projected flow variables
- \(D := P\tilde{D}P^T \) projected derivative matrix
- \(M := P\tilde{M}P^T \) projected multiplication matrix
State of the art

Moment equations

\[
\frac{\partial}{\partial t} w + D^{-1} M \frac{\partial}{\partial x} w = 0
\]

\(P\) projection matrix

\(w := P\tilde{w}\) projected flow variables

\(D := P\tilde{D}P^T\) projected derivative matrix

\(M := P\tilde{M}P^T\) projected multiplication matrix
Achievements and Problems

Achievements

- globally hyperbolic system
- multiple spatial dimensions
- rotational invariance
- single framework includes all theories

Problems

- analysis of system including collision operator
- numerical simulations
Numerical Methods
Conservative PDE systems

Standard conservative PDE system

\[\partial_t u + \partial_x F(u) = 0 \]
Conservative PDE systems

Standard conservative PDE system

$$\partial_t u + \partial_x F(u) = 0$$

Basic Finite Volume scheme

$$u_{i}^{n+1} = u_{i}^{n} - \frac{\Delta t}{\Delta x} \left(F_{i+\frac{1}{2}}^{n} - F_{i-\frac{1}{2}}^{n} \right)$$

- Numerical flux $F_{i+\frac{1}{2}}^{n}$ needed
- Conservation property by design
- Easily extendable to 2D and unstructured grids
Non-conservative PDE systems

\[\partial_t u + A(u) \partial_x u = 0 \]
Non-conservative PDE systems

\[\partial_t u + A(u) \partial_x u = 0 \]

- Can be written in conservative form iff \(A(u) = \frac{\partial F(u)}{\partial u} \)
- In general no flux function available
- Direct discretization violates conservation property

⇒ Special numerical methods are needed
Numerical Methods

Wave Propagation scheme [LeVeque, 1997]
- Second order
- Upwind type scheme
- Implemented on 2D uniform cartesian grids

PRICE-C scheme [Canestrelli, 2009]
- Arbitrary order
- Centered scheme
- Implemented on 2D unstructured grids
Wave Propagation scheme \cite{LeVeque1997}

First order scheme

\[u_{i}^{n+1} = u_{i}^{n} - \frac{\Delta t}{\Delta x} \left(A^{+}\Delta u_{i} + A^{-}\Delta u_{i+1} \right) \]

- \(A\Delta u_{i} \) is called fluctuation
- Fluctuations are split \(A\Delta u_{i} = A^{-}\Delta u_{i} + A^{+}\Delta u_{i} \)
- Similar to flux difference splitting, but without a flux function
Solution of local Riemann problem

\[A\left(u_{i-\frac{1}{2}}\right) = R \cdot \Lambda \cdot R^{-1} \]

- Wave speeds \(\lambda^j = \Lambda_{jj} \)
- Waves \(W^j = \alpha^j \cdot R^j \)
- Wave strengths \(\alpha^j = (R^{-1} \Delta u)_j \)

Left and right going fluctuations

\[
\begin{align*}
A^- \Delta u_i &= \sum_p (\lambda^p)^- W^p \\
A^+ \Delta u_i &= \sum_p (\lambda^p)^+ W^p
\end{align*}
\]
Second order extension

Add correction term

\[u_i^{n+1} = u_i^n - \frac{\Delta t}{\Delta x} (A^+ \Delta u_i + A^- \Delta u_{i+1}) - \frac{\Delta t}{\Delta x} (\tilde{F}_{i+1} - \tilde{F}_i) \]

Second order corrections

\[\tilde{F}_i = \frac{1}{2} \sum_p |\lambda_i^p| \left(1 - \frac{\Delta t}{\Delta x} |\lambda_i^p| \right) \tilde{W}_i^p \]

Limiter for stability

\[\tilde{W}_i^p = \phi (\theta_i^p) W_i^p, \quad \theta_i^p = \frac{W_{i-1}^p \cdot W_i^p}{W_i^p \cdot W_i^p} \]
Summary: Wave propagation scheme

Scheme

\[u_i^{n+1} = u_i^n - \frac{\Delta t}{\Delta x} \left(A^+ \Delta u_i + A^- \Delta u_{i+1} \right) - \frac{\Delta t}{\Delta x} \left(\bar{F}_{i+1} - \bar{F}_i \right) \]

+
 - Almost second order
 - Upwind type scheme
 - Implemented on 2D uniform cartesian grids

-
 - Not exactly second order
 - Not extendable to higher order
 - Not for unstructured grids
PRICE-C scheme [Canestrelli, 2009]

First order scheme

\[
\mathbf{u}_i^{n+1} = \mathbf{u}_i^n - \frac{\Delta t}{\Delta x} \left(A^-_{i+\frac{1}{2}} (\mathbf{u}_{i+1}^n - \mathbf{u}_i^n) + A^+_{i-\frac{1}{2}} (\mathbf{u}_i^n - \mathbf{u}_i^{n-1}) \right)
\]

- Similar notation as wave propagation scheme
- PRImitive CEntered scheme, uses no eigenvalue information
- Reduces to FORCE scheme in the conservative case

FORCE scheme

\[
\mathbf{u}_i^{n+1} = \mathbf{u}_i^n - \frac{\Delta t}{\Delta x} \left(\mathbf{F}^{\text{FORCE}}_{i+\frac{1}{2}} - \mathbf{F}^{\text{FORCE}}_{i-\frac{1}{2}} \right)
\]
Generalization of Roe matrix

Roe matrix for conservative systems

\[A_{Roe}(u_L, u_R)(u_R - u_L) = F(u_R) - F(u_L) \]

Non-conservative case

- \(A_{Roe} \) depends on a path \(\psi \) between \(u_L \) and \(u_R \)
- Example: \(\psi(s, u_L, u_R) = u_L + s \cdot (u_R - u_L), s \in [0, 1] \)

Extension: Generalized Roe matrix

\[A_{\psi}(u_L, u_R)(u_R - u_L) = \int_0^1 A(\psi(s, u_L, u_R)) \frac{\partial \psi}{\partial s} \, ds \]
Generalization of Roe matrix 2

Reduces to standard Roe matrix for conservative case

\[
A_{\psi} (u_L, u_R) (u_R - u_L) = \int_{0}^{1} A (\psi (s, u_L, u_R)) \frac{\partial \psi}{\partial s} ds
\]

\[
= \int_{0}^{1} \frac{\partial F (\psi (s, u_L, u_R))}{\partial \psi} \frac{\partial \psi}{\partial s} ds
\]

\[
= \int_{0}^{1} \frac{\partial F (\psi (s, u_L, u_R))}{\partial s} ds
\]

\[
= F (\psi (1, u_L, u_R)) - F (\psi (0, u_L, u_R)) ds
\]

\[
= F (u_R) - F (u_L)
\]
Computation of generalized Roe matrix

\[A_\psi (u_L, u_R) (u_R - u_L) = \int_0^1 A (\psi (s, u_L, u_R)) \frac{\partial \psi}{\partial s} ds \]

- Choose linear path \(\psi (s, u_L, u_R) = u_L + s \cdot (u_R - u_L), s \in [0, 1] \)
- Use Gaussian quadrature to compute integral
Computation of generalized Roe matrix

\[
A_\psi (u_L, u_R) (u_R - u_L) = \int_0^1 A (\psi (s, u_L, u_R)) \frac{\partial \psi}{\partial s} ds
\]

- Choose linear path \(\psi (s, u_L, u_R) = u_L + s \cdot (u_R - u_L), s \in [0, 1] \)
- Use Gaussian quadrature to compute integral

Computation

\[
A_\psi (u_L, u_R) (u_R - u_L) = \int_0^1 A (\psi (s, u_L, u_R)) (u_R - u_L) ds
\]

\[
\implies A_\psi (u_L, u_R) = \int_0^1 A (\psi (s, u_L, u_R)) ds \approx \sum_{j=1}^{M} \omega_j A (\psi (s_j, u_L, u_R))
\]
Complete PRICE-C scheme

First order scheme

\[u_i^{n+1} = u_i^n - \frac{\Delta t}{\Delta x} \left(A_{i+\frac{1}{2}}^- (u_{i+1}^n - u_i^n) + A_{i-\frac{1}{2}}^+ (u_i^n - u_{i-1}^n) \right) \]
Complete PRICE-C scheme

First order scheme

\[u_{i}^{n+1} = u_{i}^{n} - \frac{\Delta t}{\Delta x} \left(A_{i+\frac{1}{2}}^{-} (u_{i+1}^{n} - u_{i}^{n}) + A_{i-\frac{1}{2}}^{+} (u_{i}^{n} - u_{i-1}^{n}) \right) \]

\[A_{i+\frac{1}{2}}^{-} = \frac{1}{4} \left(2A_{\psi} (u_{i}^{n}, u_{i+1}^{n}) - \frac{\Delta x}{\Delta t} I - \frac{\Delta t}{\Delta x} (A_{\psi} (u_{i}^{n}, u_{i+1}^{n}))^2 \right) \]

\[A_{i-\frac{1}{2}}^{+} = \frac{1}{4} \left(2A_{\psi} (u_{i-1}^{n}, u_{i}^{n}) - \frac{\Delta x}{\Delta t} I - \frac{\Delta t}{\Delta x} (A_{\psi} (u_{i-1}^{n}, u_{i}^{n}))^2 \right) \]
Higher order extension

WENO reconstruction in space

\[u_i \Rightarrow u_i(x) \]

ADER approach in time

\[u_i(x, t) = u(x_i, t^n) + (x - x_i) \frac{\partial u}{\partial x} + (t - t^n) \frac{\partial u}{\partial t} \]

\[\frac{\partial u}{\partial t} = -A(u)\partial_x u \]

Integration of PDE over time-space volume and computation of integrals using Gaussian quadrature and reconstruction
Summary: PRICE-C scheme

\[u_{i}^{n+1} = u_{i}^{n} - \frac{\Delta t}{\Delta x} \left(A_{i+\frac{1}{2}}^{-} (u_{i+1}^{n} - u_{i}^{n}) + A_{i-\frac{1}{2}}^{+} (u_{i}^{n} - u_{i-1}^{n}) \right) \]

+ -

- Extension to arbitrary order
- No eigensystem needed
- For unstructured grids

- Higher order difficult to implement
- Added numerical diffusion
Numerical Results
Shock Tube Test Case

\[\rho_L, u_L, \theta_L \quad \rho_R, u_R, \theta_R \]
Riemann problem with BGK collision operator

\[\partial_t \mathbf{u} + A \partial_x \mathbf{u} = -\frac{1}{\tau} P \mathbf{u}, \quad x \in [-2, 2] \]

\[\rho_L = 7, \rho_R = 1 \]

- Variable vector \(\mathbf{u} = (\rho, u, \theta, f_3, f_4) \)
- Relaxation time \(\tau = \frac{Kn}{\rho} \Rightarrow \text{non-linear} \)
Model Equations

Grad model

\[
A_{\text{Grad}} =
\begin{pmatrix}
v & \rho & 0 & 0 & 0 \\
\frac{\theta}{\rho} & v & 1 & 0 & 0 \\
0 & 2\theta & v & \frac{6}{\rho} & 0 \\
0 & 4f_3 & \frac{\rho\theta}{2} & v & 4 \\
-\frac{f_3\theta}{\rho} & 5f_4 & \frac{3f_3}{2} & \theta & v
\end{pmatrix}
\]

HME model

\[
A_{\text{HME}} =
\begin{pmatrix}
v & \rho & 0 & 0 & 0 \\
\frac{\theta}{\rho} & v & 1 & 0 & 0 \\
0 & 2\theta & v & \frac{6}{\rho} & 0 \\
0 & 4f_3 & \frac{\rho\theta}{2} & v & 4 \\
-\frac{f_3\theta}{\rho} & 0 & -f_3 & \theta & v
\end{pmatrix}
\]
Model Equations 2

Grad model

\[
A_{\text{Grad}} = \begin{pmatrix}
\nu & \rho & 0 & 0 & 0 \\
\theta & \rho & 1 & 0 & 0 \\
0 & 2\theta & \nu & \frac{\rho}{\theta} & 0 \\
0 & 4f_3 & \rho\theta & \nu & 4 \\
-\frac{f_3\theta}{\rho} & 5f_4 & \frac{3f_3}{2} & \theta & \nu
\end{pmatrix}
\]

QBME model

\[
A_{\text{QBME}} = \begin{pmatrix}
\nu & \rho & 0 & 0 & 0 \\
\theta & \rho & 1 & 0 & 0 \\
0 & 2\theta & \nu & \frac{\rho}{\theta} & 0 \\
0 & 4f_3 & \rho\theta & -\frac{10f_4}{\theta} & \nu \\
-\frac{f_3\theta}{\rho} & 5f_4 & -f_3 & \theta + \frac{15f_4}{\rho\theta} & \nu
\end{pmatrix}
\]
QBME vs Grad, $Kn = 0.05$
QBME vs HME, $Kn = 0.5$
PRICE vs WP, $Kn = 0.5$
PRICE vs WP2, Kn = 0.5

The graph compares the pressure, density, and velocity profiles for the PRICE and WP2 models at a Knudsen number of 0.5. The results show a close agreement between the two models, with slight variations in the profiles.
Summary and Further Work

Hyperbolic Moment Equations
- QBME, HME
- PDE system in non-conservative form

Non-conservative numerics
- Wave propagation scheme
- PRICE-C scheme

Further Work
- More simulations and test cases
- Higher order PRICE-C scheme
Summary and Further Work

Hyperbolic Moment Equations
- QBME, HME
- PDE system in non-conservative form

Non-conservative numerics
- Wave propagation scheme
- PRICE-C scheme

Further Work
- More simulations and test cases
- Higher order PRICE-C scheme

Thank you for your attention!
References

J. Koellermeier, R.P. Schaerer and M. Torrilhon.
A Framework for Hyperbolic Approximation of Kinetic Equations Using Quadrature-Based Projection Methods,
Kinet. Relat. Mod. **7**(3) (2014), 531-549

J. Koellermeier, M. Torrilhon.
Hyperbolic Moment Equations Using Quadrature-Based Projection Methods,
29th Rarefied Gas Dynamics, Xi’an (2014)

Y. Fan, J. Koellermeier, J. Li, R. Li.
A framework on the globally hyperbolic moment method for kinetic equations using operator projection method accepted

Z. Cai, Y. Fan and R. Li.
Globally hyperbolic regularization of Grad’s moment system,

H. Grad.
On the kinetic theory of rarefied gases,

A. Canestrelli.
Numerical Modelling of Alluvial Rivers by Shock Capturing Methods,
Universita’ Degli Studi di Padova, (2009).

R. LeVeque.
Wave Propagation Algorithms for Multidimensional Hyperbolic Systems,
PRICE vs WP f_3, f_4
PRICE vs WP2 f_3, f_4