On the Stability of Hyperbolic Moment Equations

Julian Koellermeier

May 24th, 2016 Beijing Computational Science Research Center
Outline

1. Introduction to Moment Methods
2. Stability of Hyperbolic Moment Equations
3. Simulation Results
Introduction to Moment Methods
Boltzmann Transport Equation

\[\frac{\partial}{\partial t} f(t, x, c) + c_i \frac{\partial}{\partial x_i} f(t, x, c) = S(f) \]

PDE for particles' probability density function \(f(t, x, c) \)
- Describes change of \(f \) due to transport and collisions
- Collision operator \(S \)
- Usually a 7-dimensional phase space
Model Order Reduction

\[\frac{\partial}{\partial t} f(t, x, c) + c_i \frac{\partial}{\partial x_i} f(t, x, c) = S(f) \]

Ansatz in velocity space

\[f(t, x, c) = \sum_{i=0}^{M} f_i(t, x) H_i \left(\frac{c - v}{\sqrt{\theta}} \right) \]
Model Order Reduction

\[
\frac{\partial}{\partial t} f(t, x, c) + c_i \frac{\partial}{\partial x_i} f(t, x, c) = S(f)
\]

Ansatz in velocity space

\[
f(t, x, c) = \sum_{i=0}^{M} f_i(t, x) H_i \left(\frac{c - v}{\sqrt{\theta}} \right)
\]

- shifted and scaled weighted Hermite polynomial \(H_i \)
- Galerkin approach leads to finite system of PDEs for coefficients \(f_i \)
A Short History of Hyperbolic Moment Equations

Grad’s Method [Grad, 1949]
- Galerkin projection with Hermite polynomials, locally hyperbolic

Hyperbolic Moment Equations (HME) [Fan et al., 2012]
- modification of system matrix

Quadrature-Based Moment Equations (QBME) [JK, 2013]
- use of Gaussian quadrature

Operator Projection framework (OP) [Fan, JK et al., 2014]
- use of projections
Introduction to Moment Methods

Stability of Hyperbolic Moment Equations

Simulation Results

Boltzmann Equation

Moment Method

Moment System

Boltzmann equation

\[
\frac{\partial}{\partial t} f + c \frac{\partial}{\partial x} f = 0
\]

\[
\downarrow
\]

Hyperbolic Moment equations

\[
D \frac{\partial}{\partial t} w + MD \frac{\partial}{\partial x} w = 0
\]
Boltzmann equation

\[\frac{\partial}{\partial t} f + c \frac{\partial}{\partial x} f = 0 \]

\[\downarrow \]

Hyperbolic Moment equations

\[\frac{\partial}{\partial t} w + D^{-1} MD \frac{\partial}{\partial x} w = 0 \]
Stability of Hyperbolic Moment Equations
Stability of Hyperbolic System

\[\partial_t u + A \partial_x u = 0 \]

Wave ansatz

\[u = u_0 \cdot e^{i(kx - \omega t)}, \quad k \in \mathbb{R}, \omega \in \mathbb{C}, \quad \text{Im}(\omega) \leq 0 \text{ for stability.} \]

Stability Analysis

\[-i\omega u + ikAu = 0 \]
\[(kA - \omega I)u = 0 \]

\[\omega = EV(kA) = k \cdot EV(A) \]

⇒ A needs to have only real eigenvalues.
Stability of Relaxation System

\[\partial_t u = \varepsilon B u \]

Wave ansatz

\[u = u_0 \cdot e^{i(kx - \omega t)}, \quad k \in \mathbb{R}, \omega \in \mathbb{C}, \quad \text{Im}(\omega) \leq 0 \text{ for stability.} \]

Stability Analysis

\[-i\omega u = \varepsilon Bu \]
\[(i\varepsilon B - \omega I)u = 0 \]

\[\omega = EV(i\varepsilon B) = i\varepsilon \cdot EV(B) \]

\[\Rightarrow B \text{ needs to have only negative (real) eigenvalues.} \]
Stability of Hyperbolic Relaxation System

\[\partial_t u + A \partial_x u = \varepsilon B u \]

Wave ansatz

\[u = u_0 \cdot e^{i(kx - \omega t)}, \quad k \in \mathbb{R}, \quad \omega \in \mathbb{C}, \quad \text{Im}(\omega) \leq 0 \text{ for stability} \]

Stability analysis

\[-i\omega u + ikAu = \varepsilon Bu \]

\[(kA + i\varepsilon B - \omega I)u = 0 \]

\[\omega = EV(kA + i\varepsilon B) \]

\[\Rightarrow kA + i\varepsilon B \text{ needs to have only eigenvalues with negative imaginary part} \]
Instability of HME, [Zhao, Luo et al., 2015]

’’Stability Analysis of a Globally Hyperbolic Moment System in One Dimension’’

HME with BGK

\[\partial_t w + D^{-1} M D \partial_x w = \varepsilon B w \]

Example: \(n = 4 \)

Existence of eigenvalue with positive imaginary part and breakdown of numerical simulation.
Towards Stable Hyperbolic Moment Equations

HME with BGK

\[\partial_t w + D^{-1} MD \partial_x w = \varepsilon B w \]

Stability analysis

\[\omega = EV(kD^{-1} MD + i\varepsilon B) \]
\[= EV(kM + i\varepsilon DBD^{-1}) \]
\[= EV(kM + i\varepsilon BD^{-1}) \]
Towards Stable Hyperbolic Moment Equations

HME with BGK

\[\partial_t w + D^{-1}MD \partial_x w = \varepsilon Bw \]

Stability analysis

\[\omega = EV(kD^{-1}MD + i\varepsilon B) \]
\[= EV(kM + i\varepsilon DBD^{-1}) \]
\[= EV(kM + i\varepsilon BD^{-1}) \]

Stable for \(D = \text{diag}(d_{ii})! \)
SHME explanation

Boltzmann equation

\[
\frac{\partial f}{\partial t} + \xi \frac{\partial f}{\partial x} = 0
\]

\[
f = f_\alpha H_\alpha \Rightarrow \frac{\partial f}{\partial s} = \frac{\partial f_\alpha}{\partial s} H_\alpha + f_\alpha \frac{\partial H_\alpha}{\partial s}, \ s = t, x
\]

Derivative relation for weighted Hermite polynomials

\[
\frac{\partial H_\alpha}{\partial s} = \frac{\partial u}{\partial s} H_{\alpha + 1} + \frac{1}{2} \frac{\partial \theta}{\partial s} H_{\alpha + 2}
\]

Recurrence relation for weighted Hermite polynomials

\[
\xi H_\alpha = \theta H_{\alpha + 1} + u H_\alpha + \alpha H_{\alpha - 1}
\]
Grad's Equations

\[\partial_t \mathbf{w} + \mathbf{A}_{\text{Grad}} \partial_x \mathbf{w} = \frac{1}{\tau} \mathbf{Bw} \]

Grad model

\[
\mathbf{A}_{\text{Grad}} = \begin{pmatrix}
\nu & \rho & 0 & 0 & 0 \\
\frac{\theta}{\rho} & \nu & 1 & 0 & 0 \\
0 & 2\theta & \nu & \frac{6}{\rho} & 0 \\
0 & 4f_3 & \frac{\rho\theta}{2} & \nu & 4 \\
-\frac{f_3\theta}{\rho} & 5f_4 & \frac{3f_3}{2} & \theta & \nu
\end{pmatrix}
\]
Hyperbolic Moment Equations

\[\partial_t \mathbf{w} + \mathbf{A}_{\text{HME}} \partial_x \mathbf{w} = \frac{1}{\tau} \mathbf{B} \mathbf{w} \]

\[
\mathbf{A}_{\text{HME}} = \begin{pmatrix}
\nu & \rho & 0 & 0 & 0 \\
\frac{\theta}{\rho} & \nu & 1 & 0 & 0 \\
0 & 2\theta & \nu & \frac{6}{\rho} & 0 \\
0 & 4f_3 & \frac{\rho\theta}{2} & \nu & 4 \\
-\frac{f_3\theta}{\rho} & 0 & -f_3 & \theta & \nu
\end{pmatrix}
\]
Quadrature-Based Moment Equations

\[\partial_t w + A_{QBME} \partial_x w = \frac{1}{\tau} Bw \]

QBME model

\[
A_{QBME} = \begin{pmatrix}
\nu & \rho & 0 & 0 & 0 \\
\frac{\theta}{\rho} & \nu & 1 & 0 & 0 \\
0 & 2\theta & \nu & \frac{6}{\rho} & 0 \\
0 & 4f_3 & \frac{\rho\theta}{2} - \frac{10f_4}{\theta} & \nu & 4 \\
-\frac{f_3\theta}{\rho} & 5f_4 & -f_3 & \theta + \frac{15f_4}{\rho\theta} & \nu \\
\end{pmatrix}
\]
Stable Hyperbolic Moment Equations

\[
\partial_t w + A_{SHME} \partial_x w = \frac{1}{\tau} B w
\]

SHME model

\[
A_{SHME} = \begin{pmatrix}
\nu & \rho & 0 & 0 & 0 \\
\theta & \nu & 1 & 0 & 0 \\
\rho & \nu & 2\theta & \nu & 0 \\
0 & \rho\theta & 0 & \nu & 4 \\
0 & 0 & \frac{\rho\theta}{2} & \theta & \nu
\end{pmatrix}
\]
Simulation Results
Shock Tube Test Case

\[
\frac{\partial}{\partial t} \mathbf{w} + A(\mathbf{w}) \frac{\partial}{\partial x} \mathbf{w} = -1 \tau \mathbf{Pw},
\]

\(x \in [-2, 2]\)

\(\rho_L, u_L, \theta_L\)

\(\rho_R, u_R, \theta_R\)
Riemann problem with BGK collision operator

\[\partial_t \mathbf{w} + \mathbf{A}(\mathbf{w}) \partial_x \mathbf{w} = -\frac{1}{\tau} \mathbf{P} \mathbf{w}, \quad x \in [-2, 2] \]

\[\rho_L = 7, \rho_R = 1 \]

- Variable vector \(\mathbf{w} = (\rho, u, \theta, f_3, f_4) \)
- Relaxation time \(\tau = \frac{Kn}{\rho} \Rightarrow \text{non-linear} \)
Grad vs QBME, $Kn = 0.05$

![Graph showing comparison between Grad and QBME models for $Kn = 0.05$. The graph plots density (ρ), pressure (p), and velocity (u) against a parameter, with clear distinctions between Grad and QBME models.](image)
HME vs QBME, $Kn = 0.5$
HME vs SHME, $Kn = 0.5$

![Graph showing comparison between HME and SHME for different variables including density, pressure, and velocity. The graph illustrates the stability of Hyperbolic Moment Equations (HME) and SHME models.]
HME vs SHME, f_3, f_4
Summary

(1) Stability of hyperbolic moment equations
(2) Instability of existing models
(3) New stable model: SHME
(4) Promising numerical results

Further Work
- Derivation of further stable moment models
- More simulations and test cases
Summary

(1) Stability of hyperbolic moment equations
(2) Instability of existing models
(3) New stable model: SHME
(4) Promising numerical results

Further Work

- Derivation of further stable moment models
- More simulations and test cases

Thank you for your attention!