Numerical Solution of Hyperbolic Moment Models for the Boltzmann Equation

Julian Koellermeier, Manuel Torrilhon

December 10th, 2015 NEGF, Eindhoven
Introduction
Introduction

Aim

Derive hyperbolic PDE systems for rarefied gas flows

Extension of standard fluid dynamic equations

- Reentry flows
- Micro channel flows
Introduction

Aim

Derive hyperbolic PDE systems for rarefied gas flows

Extension of standard fluid dynamic equations

- Reentry flows
- Micro channel flows

Importance of Hyperbolicity

- Physical solutions with bounded propagation speeds
- Well-posedness and stability of the solution
Boltzmann Transport Equation

\[
\frac{\partial}{\partial t} f(t, x, c) + c_i \frac{\partial}{\partial x_i} f(t, x, c) = S(f)
\]

PDE for particles’ *probability density function* \(f(t, x, c) \)

- Describes change of \(f \) due to transport and collisions
- Collision operator \(S \)
- Usually a 7-dimensional phase space
Model Order Reduction

Ansatz

\[f(t, x, c) = \sum_{i=0}^{M} f_i(t, x) \mathcal{H}_i^{\rho, v, \theta}(c) \]
Model Order Reduction

Ansatz

\[f(t, x, c) = \sum_{i=0}^{M} f_i(t, x) H_i^{\rho, v, \theta}(c) \]

Reduction of Complexity

One PDE for \(f(t, x, c) \) that is 7-dimensional
Model Order Reduction

Ansatz

\[f(t, x, c) = \sum_{i=0}^{M} f_i(t, x) H_i^{\rho, \nu, \theta}(c) \]

Reduction of Complexity

One PDE for \(f(t, x, c) \) that is 7-dimensional

\[\Downarrow \]

System of PDEs for \(\rho(t, x), \nu(t, x), \theta(t, x), f_i(t, x) \) that is 4-dimensional
Hyperbolic Moment Equations
Boltzmann equation

\[\frac{\partial}{\partial t} f + c \frac{\partial}{\partial x} f = 0 \]

Operator Projection Framework

\[D \frac{\partial}{\partial t} w + MD \frac{\partial}{\partial x} w = 0 \]
Boltzmann equation

\[
\frac{\partial}{\partial t} f + c \frac{\partial}{\partial x} f = 0
\]

Operator Projection Framework

\[
\frac{\partial}{\partial t} w + D^{-1} MD \frac{\partial}{\partial x} w = 0
\]
\[\frac{\partial t w + A_{\text{Grad}} \partial_x w = 0}{} \]

Grad model

\[A_{\text{Grad}} = \begin{pmatrix}
 v & \rho & 0 & 0 & 0 \\
 \frac{\theta}{\rho} & v & 1 & 0 & 0 \\
 0 & 2\theta & v & \frac{6}{\rho} & 0 \\
 0 & 4f_3 & \frac{\rho\theta}{2} & v & 4 \\
 -\frac{f_3\theta}{\rho} & 5f_4 & \frac{3f_3}{2} & \theta & v
\end{pmatrix} \]
Grad's Equations [Grad 1949]

Standard Galerkin projection of equations

\[\partial_t w + A_{\text{Grad}} \partial_x w = 0 \]

Grad model

\[
A_{\text{Grad}} = \begin{pmatrix}
\nu & \rho & 0 & 0 & 0 \\
\frac{\theta}{\rho} & \nu & 1 & 0 & 0 \\
0 & 2\theta & \nu & \frac{6}{\rho} & 0 \\
0 & 4f_3 & \frac{\rho \theta}{2} & \nu & 4 \\
-\frac{f_3 \theta}{\rho} & 5f_4 & \frac{3f_3}{2} & \theta & \nu
\end{pmatrix}
\]

\[\Rightarrow \text{not globally hyperbolic} \]
Modify last equation to achieve hyperbolicity

\[\partial_t w + A_{\text{HME}} \partial_x w = 0 \]

HME model

\[
A_{\text{HME}} = \begin{pmatrix}
\nu & \rho & 0 & 0 & 0 \\
\frac{\theta}{\rho} & \nu & 1 & 0 & 0 \\
0 & 2\theta & \nu & \frac{6}{\rho} & 0 \\
0 & 4f_3 & \frac{\rho\theta}{2} & \nu & 4 \\
-\frac{f_3\theta}{\rho} & 0 & -f_3 & \theta & \nu
\end{pmatrix}
\]
Modify last equation to achieve hyperbolicity

\[
\partial_t w + A_{HME} \partial_x w = 0
\]

HME model

\[
A_{HME} = \begin{pmatrix}
\nu & \rho & 0 & 0 & 0 \\
\frac{\theta}{\rho} & \nu & 1 & 0 & 0 \\
0 & 2\theta & \nu & \frac{6}{\rho} & 0 \\
0 & 4f_3 & \frac{\rho\theta}{\rho} & \nu & 4 \\
-\frac{f_3\theta}{\rho} & 0 & -f_3 & \theta & \nu \\
\end{pmatrix}
\]

⇒ globally hyperbolic
Substitute integration by Gaussian quadrature to achieve hyperbolicity

\[
\partial_t w + A_{QBME} \partial_x w = 0
\]

QBME model

\[
A_{QBME} = \begin{pmatrix}
\nu & \rho & 0 & 0 & 0 \\
\frac{\theta}{\rho} & \nu & 1 & 0 & 0 \\
0 & 2\theta & \nu & \frac{6}{\rho} & 0 \\
0 & 4f_3 & \frac{\rho\theta}{2} - \frac{10f_4}{\theta} & \nu & 4 \\
-\frac{f_3\theta}{\rho} & 5f_4 & -f_3 & \theta + \frac{15f_4}{\rho\theta} & \nu
\end{pmatrix}
\]
Substitute integration by Gaussian quadrature to achieve hyperbolicity

\[\partial_t w + A_{QBME} \partial_x w = 0 \]

QBME model

\[
A_{QBME} = \begin{pmatrix}
\nu & \rho & 0 & 0 & 0 \\
\theta & v & 1 & 0 & 0 \\
0 & 2\theta & v & \frac{6}{\rho} & 0 \\
0 & 4f_3 & \frac{\rho \theta}{2} & -\frac{10f_4}{\theta} & v \\
-\frac{f_3 \theta}{\rho} & 5f_4 & -f_3 & \theta + \frac{15f_4}{\rho \theta} & v \\
\end{pmatrix}
\]

\[\Rightarrow \text{globally hyperbolic} \]
Model Summary

Properties
- globally hyperbolic system
- multiple spatial dimensions
- rotational invariance
- single framework includes all theories

Questions
- accuracy of new models
- numerical simulations
Numerical Simulations
Shock Tube Test Case

\begin{align*}
\frac{\partial}{\partial t} w + \frac{\partial}{\partial x} A w &= -\frac{1}{\tau} Pw, \\
\rho_{L}, u_{L}, \theta_{L} &
\end{align*}

\rho_{L} = 7, \rho_{R} = 1

Variable vector \(w = (\rho, v, \theta, f_{3}, f_{4}) \)

Relaxation time \(\tau = \frac{\rho}{K_{n}} \Rightarrow \text{non-linear} \)

Julian Koellermeier, Manuel Torrilhon
Riemann problem with BGK collision operator

\[\partial_t w + A \partial_x w = -\frac{1}{\tau} Pw, \quad x \in [-2, 2] \]

\[\rho_L = 7, \rho_R = 1 \]

- Variable vector \(w = (\rho, \nu, \theta, f_3, f_4) \)
- Relaxation time \(\tau = \frac{Kn}{\rho} \Rightarrow \text{non-linear} \)
QBME vs Grad, $Kn = 0.05$
QBME vs HME, $Kn = 0.5$
Summary

- OP, HME, QBME
- Numerical solutions

Further Work

- Tests with more equations
- Different test cases
- 2D simulations
Summary and Further Work

Summary
- OP, HME, QBME
- Numerical solutions

Further Work
- Tests with more equations
- Different test cases
- 2D simulations

Thank you for your attention!
References

J. Koellermeier, R.P. Schaerer and M. Torrilhon.
A Framework for Hyperbolic Approximation of Kinetic Equations Using Quadrature-Based Projection Methods,
Kinet. Relat. Mod. **7**(3) (2014), 531-549

J. Koellermeier, M. Torrilhon.
Hyperbolic Moment Equations Using Quadrature-Based Projection Methods,
29th Rarefied Gas Dynamics, Xi’an (2014)

Y. Fan, J. Koellermeier, J. Li, R. Li.
A framework on the globally hyperbolic moment method for kinetic equations using operator projection method
in press

Z. Cai, Y. Fan and R. Li.
Globally hyperbolic regularization of Grad’s moment system,

H. Grad.
On the kinetic theory of rarefied gases,
QBME vs HME, f_3, f_4
PRICE-C scheme [Canestrelli, 2009]

First order scheme

\[
\mathbf{u}_i^{n+1} = \mathbf{u}_i^n - \frac{\Delta t}{\Delta x} \left(A_i^{\frac{1}{2}+} (\mathbf{u}_{i+1}^n - \mathbf{u}_i^n) + A_i^{\frac{1}{2}-} (\mathbf{u}_i^n - \mathbf{u}_{i-1}^n) \right)
\]

- PRImitive CEntered scheme, uses no eigenvalue information
- Reduces to FORCE scheme in the conservative case

FORCE scheme

\[
\mathbf{u}_i^{n+1} = \mathbf{u}_i^n - \frac{\Delta t}{\Delta x} \left(\mathbf{F}_{i+\frac{1}{2}}^{\text{FORCE}} - \mathbf{F}_{i-\frac{1}{2}}^{\text{FORCE}} \right)
\]
PRICE vs WP, Kn = 0.5
PRICE vs WP, f_3, f_4
Primitive vs Partially Conserved, $Kn = 0.5$
Primitive vs Partially Conserved, f_3, f_4