Numerical Convergence Study of Hyperbolic Moment Models in Partially-Conservative Form

J. Koellermeier, M. Torrilhon

30th International Symposium on Rarefied Gas Dynamics, Victoria
July 12th, 2016
Outline

1. Introduction to Moment Methods
2. Numerical Methods
3. Simulation Results
Boltzmann Transport Equation

\[
\frac{\partial}{\partial t} f(t, x, c) + c_i \frac{\partial}{\partial x_i} f(t, x, c) = S(f)
\]

PDE for particles’ probability density function \(f(t, x, c) \)

- Describes change of \(f \) due to transport and collisions
- Collision operator \(S \)
- Usually a 7-dimensional phase space
Model Reduction (1D)

\[\frac{\partial}{\partial t} f(t, x, c) + c \frac{\partial}{\partial x} f(t, x, c) = S(f) \]

Replacement to reduce complexity

\[f(t, x, c) \leftrightarrow w(t, x) \]
Model Reduction (1D)

\[\frac{\partial}{\partial t} f(t, x, c) + c \frac{\partial}{\partial x} f(t, x, c) = S(f) \]

Replacement to reduce complexity

\[f(t, x, c) \longleftrightarrow \mathbf{w}(t, x) \]

Challenge

Highly non-linear ansatz is necessary for hypersonic problems
Model Reduction (1D)

\[\frac{\partial}{\partial t} f(t, x, c) + c \frac{\partial}{\partial x} f(t, x, c) = S(f) \]

Replacement to reduce complexity

\[f(t, x, c) \leftrightarrow w(t, x) \]

Challenge

Highly non-linear ansatz is necessary for hypersonic problems

Model or closure relation

\[f(t, x, c) = \sum_{i=0}^{M} f_i(t, x) H_i \left(\frac{c - v}{\sqrt{\theta}} \right), \quad w(t, x) = (\rho, v, \theta, f_i)^T \]
Moment Equations

Boltzmann equation \Rightarrow moment equations

$$\frac{\partial}{\partial t} f + c \frac{\partial}{\partial x} f = S(f) \quad \Rightarrow \quad D \frac{\partial}{\partial t} w + MD \frac{\partial}{\partial x} w = -\frac{1}{\tau} B w$$
Boltzmann equation \Rightarrow moment equations

$$\frac{\partial f}{\partial t} + c \frac{\partial f}{\partial x} = S(f) \quad \Rightarrow \quad \frac{\partial}{\partial t} w + D^{-1}MD \frac{\partial}{\partial x} w = -\frac{1}{\tau} D^{-1} B w$$
Moment Equations

Boltzmann equation \Rightarrow moment equations

\[
\frac{\partial}{\partial t} f + c \frac{\partial}{\partial x} f = S(f) \quad \Rightarrow \quad \frac{\partial}{\partial t} w + D^{-1} M D \frac{\partial}{\partial x} w = -\frac{1}{\tau} D^{-1} B w
\]

Operator Projection Framework \([\text{FAN, JK et al.}, 2016]\)

- $\tilde{D} = PDP^T$, $\tilde{M} = PMP^T$
- Projection matrix P depends on the model
- Projections guarantee hyperbolicity
Grad’s Method \([\text{Grad}, 1949]\)

Standard Galerkin projection of equations

\[
\partial_t \mathbf{w} + \mathbf{A}_{\text{Grad}} \partial_x \mathbf{w} = -\frac{1}{\tau} \mathbf{Bw}
\]

Grad model \((M = 4)\)

\[
\mathbf{A}_{\text{Grad}} = \begin{pmatrix}
\nu & \rho & 0 & 0 & 0 \\
\theta & \nu & 1 & 0 & 0 \\
0 & 2\theta & \nu & \frac{6}{\rho} & 0 \\
0 & 4f_3 & \frac{\rho\theta}{2} & \nu & 4 \\
-\frac{f_3\theta}{\rho} & 5f_4 & \frac{3f_3}{2} & \theta & \nu
\end{pmatrix}
\]

Not globally hyperbolic but in conservative form
Modify last equation to achieve hyperbolicity

$$\partial_t w + A_{HME} \partial_x w = -\frac{1}{\tau} B w$$

HME model ($M = 4$)

$$A_{HME} = \begin{pmatrix}
\nu & \rho & 0 & 0 & 0 \\
\frac{\theta}{\rho} & \nu & 1 & 0 & 0 \\
0 & 2\theta & \nu & \frac{6}{\rho} & 0 \\
0 & 4f_3 & \frac{\rho\theta}{2} & \nu & 4 \\
-\frac{f_3\theta}{\rho} & 0 & -f_3 & \theta & \nu
\end{pmatrix}$$

Hyperbolic but only partially conservative
Use of Gaussian quadrature

\[\partial_t w + A_{QBME} \partial_x w = -\frac{1}{\tau} B w \]

QBME model \((M = 4)\)

\[
A_{QBME} = \begin{pmatrix}
\nu & \rho & 0 & 0 & 0 \\
\frac{\theta}{\rho} & \nu & 1 & 0 & 0 \\
0 & 2\theta & \nu & \frac{6}{\rho} & 0 \\
0 & 4f_3 & \frac{\rho\theta}{\theta} - \frac{10f_4}{\theta} & \nu & 4 \\
-\frac{f_3\theta}{\rho} & 5f_4 & -f_3 & \theta + \frac{15f_4}{\rho\theta} & \nu
\end{pmatrix}
\]

Hyperbolic but only partially conservative
1 Introduction to Moment Methods

2 Numerical Methods

3 Simulation Results
Non-conservative Numerics

Standard conservative PDE system

\[\partial_t u + \partial_x F(u) = 0 \]
Non-conservative Numerics

Standard conservative PDE system

\[\partial_t u + \partial_x F(u) = 0 \]

Non-conservative PDE system

\[\partial_t u + A(u)\partial_x u = 0 \]

- Hyperbolic moment equations cannot be written in conservative form
- At least one of the last equations is non-conservative
- Mass, momentum and energy are still conserved
Castro scheme [Castro, Pares, 2004]

First order scheme

\[
\begin{align*}
 u_i^{n+1} &= u_i^n - \frac{\Delta t}{\Delta x} \left(A_{i+\frac{1}{2}}^- (u_{i+1}^n - u_i^n) + A_{i-\frac{1}{2}}^+ (u_i^n - u_{i-1}^n) \right) \\
 \end{align*}
\]

- Upwind type scheme, uses eigenvalue information

\[
 A_{i+\frac{1}{2}}^\pm = A \left(u_i^n, u_{i+1}^n \right)^\pm = R \cdot \Lambda^\pm \cdot R^{-1}
\]
PRICE-C scheme [Canestrelli, 2009]

First order scheme

\[
\begin{align*}
 u_i^{n+1} &= u_i^n - \frac{\Delta t}{\Delta x} \left(A_{i+\frac{1}{2}}^-(u_{i+1}^n - u_i^n) + A_{i-\frac{1}{2}}^+(u_i^n - u_{i-1}^n) \right)
\end{align*}
\]

- Central scheme, adds numerical diffusion

\[
\begin{align*}
 A_{i+\frac{1}{2}}^- &= \frac{1}{4} \left(2A(u_i^n, u_{i+1}^n) - \frac{\Delta x}{\Delta t} I - \frac{\Delta t}{\Delta x} (A(u_i^n, u_{i+1}^n))^2 \right) \\
 A_{i-\frac{1}{2}}^+ &= \frac{1}{4} \left(2A(u_{i-1}^n, u_i^n) - \frac{\Delta x}{\Delta t} I - \frac{\Delta t}{\Delta x} (A(u_{i-1}^n, u_i^n))^2 \right)
\end{align*}
\]
Wave propagation scheme [LeVeque, 1997]

Second order scheme

\[u_i^{n+1} = u_i^n - \frac{\Delta t}{\Delta x} \left(A^+ \Delta u_i + A^- \Delta u_{i+1} \right) - \frac{\Delta t}{\Delta x} \left(\tilde{F}_{i+1} - \tilde{F}_i \right) \]

- Upwind type scheme
- Correction term for almost second order
- Only for uniform grids
1 Introduction to Moment Methods

2 Numerical Methods

3 Simulation Results
Shock Tube Test Case

\[\rho_L, u_L, \theta_L \quad \text{and} \quad \rho_R, u_R, \theta_R \]

\[\frac{\partial}{\partial t} \mathbf{w} + A(\mathbf{w}) \frac{\partial}{\partial x} \mathbf{w} = -\frac{1}{\tau} B \mathbf{w}, \quad x \in [-2, 2] \]

\[\rho_L = 7, \rho_R = 1 \]

Variable vector \(\mathbf{w} = (\rho, u, \theta, f_3, f_4) \)

Relaxation time \(\tau = Kn \rho \Rightarrow \text{non-linear} \)
Riemann problem with BGK collision operator

\[
\partial_t \mathbf{w} + A(\mathbf{w}) \partial_x \mathbf{w} = -\frac{1}{\tau} B \mathbf{w}, \quad x \in [-2, 2]
\]

\[
\rho_L = 7, \quad \rho_R = 1
\]

- Variable vector \(\mathbf{w} = (\rho, u, \theta, f_3, f_4) \)
- Relaxation time \(\tau = \frac{Kn}{\rho} \Rightarrow \) non-linear
Method Comparison, $Kn = 0.5$
Model Comparison, $Kn = 0.05$
Model Comparison, $Kn = 0.5$
Averaged Solution $M = 8$ & $M = 9$, $Kn = 0.5$

![Graph showing the comparison between QBME8+9 and DVM methods for averaged solution $M = 8$ and $M = 9$ with $Kn = 0.5$. The graph plots density ρ, pressure p, and velocity u against a scaled horizontal axis. The red line represents QBME8+9, and the black line represents DVM. The x-axis is scaled from -1 to 1.5, and the y-axis shows density and pressure values.]

J. Koellermeier, M. Torrilhon
Convergence of Model, $Kn = 0.5$

![Graph showing the convergence of different variables for QBME and HME models for $Kn = 0.5$. The graph includes lines for variables ρ, u, p, and θ, as well as a line for the 1st order model.]
Conclusion

Summary
- Hyperbolic moment equations
- Non-conservative numerics
- Simulation results

Further work
- Derivation of new models
- Higher order schemes
- 2D simulations
Summary

- Hyperbolic moment equations
- Non-conservative numerics
- Simulation results

Further work

- Derivation of new models
- Higher order schemes
- 2D simulations

Thank you for your attention!
References

H. Grad.
On the kinetic theory of rarefied gases,

Z. Cai, Y. Fan and R. Li.
Globally hyperbolic regularization of Grad’s moment system,

J. Koellermeier, R.P. Schaerer and M. Torrilhon.
A Framework for Hyperbolic Approximation of Kinetic Equations Using Quadrature-Based Projection Methods,
Kinet. Relat. Mod., 7(3) (2014), 531-549

Y. Fan, J. Koellermeier, J. Li, R. Li.
A framework on the globally hyperbolic moment method for kinetic equations using operator projection method

R. LeVeque.
Wave Propagation Algorithms for Multidimensional Hyperbolic Systems,

C. Pares, M. Castro.
On the Well-balance Property of Roe’s Method for Nonconservative Hyperbolic Systems,

A. Canestrelli.
Numerical Modelling of Alluvial Rivers by Shock Capturing Methods,
Università' Degli Studi di Padova, (2009).