Improving the Convergence of Moment Methods for Rarefied Gases Using Filters

Julian Koellermeier, Freie Universität Berlin
Yuwei Fan, Stanford University

RGD 31, Glasgow
July 26th, 2018
Motivation

Objective

Simulation of flow problems involving fast, rarefied gases

Knudsen number: \(Kn = \frac{\lambda}{L} \)
Moment Method \[\text{Grad}, 1949 \]

Boltzmann Transport Equation

\[
\frac{\partial}{\partial t} f(t, x, c) + c \frac{\partial}{\partial x} f(t, x, c) = S(f)
\]

Moment Method using Grad’s ansatz

\[
f(t, x, c) = \frac{\rho}{\sqrt{2\pi\theta}} e^{-\frac{(c-v)^2}{2\theta}} \sum_{\alpha=0}^{M} f_{\alpha}(t, x) \phi_{\alpha}\left(\frac{c-v}{\sqrt{\theta}}\right)
\]

\[
\partial_t u_M + A(u_M) \partial_x u_M = S, \quad u_M = (\rho, v, \theta, f_3, f_4, \ldots, f_M)^T
\]
Hyberbolic Moment Models \([\text{Grad, 1949}]\)

Grad’s model is not hyperbolic \(\Rightarrow\) breakdown of solution

Use Hyperbolic Moment Model

1. HME \([\text{Cai et al., 2013}]\)
2. QBME \([\text{JK et al., 2013}]\)

\[
\partial_t \mathbf{u}_M + \tilde{\mathbf{A}}(\mathbf{u}_M) \partial_x \mathbf{u}_M = \mathbf{S}, \quad \mathbf{u}_M = (\rho, v, \theta, f_3, f_4, \ldots, f_M)^T
\]

- globally hyperbolic
- analytical eigenstructure
1D shock tube test [JK, 2017]

\[\text{Kn} = 0.05, M = 4 \]

- accurate solution for small Kn
1D shock tube test [JK, 2017]

\[Kn = 0.5, \, M = 4 \]

- accurate solution for small \(Kn \)
- increased applicability for larger \(Kn \)
1D shock tube test [JK, 2017]

\[\text{Kn} = 0.5, \, M = 8, 9 \]

- accurate solution for small Kn
- increased applicability for larger Kn
- error reduction with increasing moments M
1D shock tube test [JK, 2017]

\[Kn = 0.5, M = 4, \ldots, 9 \]

- accurate solution for small \(Kn \)
- increased applicability for larger \(Kn \)
- error reduction with increasing moments \(M \)
Starting point: Averaging

Kn = 1

Observation 1:
Convergence is improved by averaging odd and even moment solutions
Observation 1:
Convergence is improved by averaging odd and even moment solutions

Questions
(1) Averaging times? t_{END} or t_k
(2) Averaging weight? $u_{AV} = \alpha u_M + (1 - \alpha) u_{M+1}$
(3) Averaging multiple solutions? $u_{M+1}, u_M, u_{M-1}, \ldots$
(4) Averaging overhead reduction? u_M and u_{M+1}
Linearized, collisionless moment model

\[\partial_t \mathbf{u}_M + A \partial_x \mathbf{u}_M = 0, \]

Idea: Add artificial collision term in last equation

\[\partial_t \tilde{\mathbf{u}}_M + A \partial_x \tilde{\mathbf{u}}_M = -\frac{1}{\epsilon} \tilde{\mathbf{Q}}, \quad \tilde{\mathbf{Q}} = (0, \ldots, 0, f_M)^T \]

1) \(\epsilon \to \infty \) \quad \Rightarrow \quad \tilde{\mathbf{u}}_M = \mathbf{u}_M

2) \(\epsilon \to 0 \) \quad \Rightarrow \quad f_M = 0 \Rightarrow \tilde{\mathbf{u}}_M = \mathbf{u}_{M-1}

3) \(0 < \epsilon < \infty \) \quad \Rightarrow \quad \tilde{\mathbf{u}}_M \) in between \(\mathbf{u}_{M-1} \) and \(\mathbf{u}_M \)

Observation 2:
Artificial collision mimic averaging
Generalization of artificial collisions

Add artificial collision to every non-linear equation:

\[
\partial_t u_M + A(u_M) \partial_x u_M = -\frac{1}{\epsilon} \tilde{Q},
\]

Artificial collision terms:

\[
- \frac{1}{\epsilon} \tilde{Q}_i = - \frac{1}{\epsilon} \beta(i) f_i,
\]
Numerical solution

\[\partial_t u_M + A(u_M) \partial_x u_M = -\frac{1}{\epsilon} \tilde{Q}, \]

Time splitting

1) \(\partial_t u_M + A(u_M) \partial_x u_M = 0, \)
2) \(\partial_t u_M = -\frac{1}{\epsilon} \tilde{Q} \)

Exact solution of collision step 2)

\[\partial_t f_i = -\frac{1}{\epsilon} \beta(i) f_i, \]
\[\Rightarrow f_i^{n+1} = \exp \left(-\frac{\Delta t}{\epsilon} \beta (i) \right) f_i^n \]
Filter function

\[
\Rightarrow f_{i}^{n+1} = \exp \left(-\frac{\Delta t}{\epsilon} \beta (i) \right) f_{i}^{n} \\
= \sigma (i, \Delta t) f_{i}^{n}
\]

Observation 3: Artificial collision can be solved by filtering
Filter function

\[f_{i}^{n+1} = \exp \left(-\frac{\Delta t}{\epsilon} \beta (i) \right) f_{i}^{n} = \sigma (i, \Delta t) f_{i}^{n} \]

Observation 3:
Artificial collision can be solved by filtering

Time-consistent filter function:
[Di et al., 2017]

\[\beta (i) = \begin{cases}
0, & i \leq \frac{2M}{3}, \\
\left(\frac{i}{M} \right) \gamma, & i > \frac{2M}{3}.
\end{cases} \]

Filter strength: \(\epsilon \)

\[M = 10, \, \epsilon = 1/36, \, \gamma = 36 \]
Filtered results, shock tube $Kn = 1$ (1)

(a) $M = 6$

(b) $M = 9$
Filtered results, shock tube $Kn = 1 (2)$

(c) $M = 12$

(d) $M = 15$
Filtered results, shock tube $Kn = 1$ (3)

(e) $M = 18$

(f) $M = 21$
Filtered convergence, shock tube

(g) $Kn = 1$

(h) $Kn = \infty$
Conclusion

Summary of FHME
- Averaging
- Artificial collision
- Filtering

Benefits of FHME
- Improved convergence
- No computational overhead
- Easy implementation
Conclusion

Summary of FHME
- Averaging
- Artificial collision
- Filtering

Benefits of FHME
- Improved convergence
- No computational overhead
- Easy implementation

Thank you for your attention!
References

Derivation and Numerical Solution of Hyperbolic Moment Equations for Rarefied Gas Flows,
J. Koellermeier, dissertation, RWTH Aachen University, 2017

Numerical Study of Partially Conservative Moment Equations in Kinetic Theory,

Numerical solution of hyperbolic moment models for the Boltzmann equation,

A framework on the globally hyperbolic moment method for kinetic equations using operator projection method,

A Framework for Hyperbolic Approximation of Kinetic Equations Using Quadrature-Based Projection Methods,
J. Koellermeier, R.P. Schaarer, M. Torrilhon, Kinet. Relat. Mod. 7(3), 2014